Hostname: page-component-848d4c4894-89wxm Total loading time: 0 Render date: 2024-07-05T07:22:43.137Z Has data issue: false hasContentIssue false

Livšic theorems for non-commutative groups including diffeomorphism groups and results on the existence of conformal structures for Anosov systems

Published online by Cambridge University Press:  17 July 2009

RAFAEL DE LA LLAVE
Affiliation:
Department of Mathematics, University of Texas at Austin, 1 University Station, C1200, Austin, TX 78712, USA (email: llave@math.utexas.edu)
ALISTAIR WINDSOR
Affiliation:
373 Dunn Hall, Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152-3240, USA (email: awindsor@memphis.edu)

Abstract

The celebrated Livšic theorem [A. N. Livšic, Certain properties of the homology of Y-systems, Mat. Zametki 10 (1971), 555–564; A. N. Livšic, Cohomology of dynamical systems, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 1296–1320] states that given a manifold M, a Lie group G, a transitive Anosov diffeomorphism f on M and a Hölder function η:MG whose range is sufficiently close to the identity, it is sufficient for the existence of ϕ:MG satisfying η(x)=ϕ(f(x))ϕ(x)−1 that a condition—obviously necessary—on the cocycle generated by η restricted to periodic orbits is satisfied. In this paper we present a new proof of the main result. These methods allow us to treat cocycles taking values in the group of diffeomorphisms of a compact manifold. This has applications to rigidity theory. The localization procedure we develop can be applied to obtain some new results on the existence of conformal structures for Anosov systems.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Banyaga, A.. The Structure of Classical Diffeomorphism Groups. Kluwer Academic Publishers, Dordrecht, 1997.CrossRefGoogle Scholar
[2]Bruin, H., Holland, M. and Nicol, M.. Livšic regularity for Markov systems. Ergod. Th. & Dynam. Sys. 25(6) (2005), 17391765.CrossRefGoogle Scholar
[3]Burger, M. and Iozzi (Eds), A.. Rigidity in Dynamics and Geometry. Springer, Berlin, 2002.CrossRefGoogle Scholar
[4]Bercovici, H. and Niţică, V.. A Banach algebra version of the Livsic theorem. Discrete Contin. Dyn. Syst. 4(3) (1998), 523534.CrossRefGoogle Scholar
[5]Bowen, R.. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms (Lecture Notes in Mathematics, 470). Springer, Berlin, 1975.CrossRefGoogle Scholar
[6]Barreira, L. and Pesin, Y.. Smooth Ergodic Theory and Nonuniformly Hyperbolic Dynamics (Handbook of Dynamical Systems, 1B). Elsevier, Amsterdam, 2006, pp. 57263 (with an appendix by Omri Sarig).Google Scholar
[7]Collet, P., Epstein, H. and Gallavotti, G.. Perturbations of geodesic flows on surfaces of constant negative curvature and their mixing properties. Comm. Math. Phys. 95(1) (1984), 61112.CrossRefGoogle Scholar
[8]Cabré, X., Fontich, E. and de la Llave, R.. The parameterization method for invariant manifolds. I. Manifolds associated to non-resonant subspaces. Indiana Univ. Math. J. 52(2) (2003), 283328.CrossRefGoogle Scholar
[9]Castro, J. A. and Moriyón, R.. Analytic conjugation of diffeomorphisms in tn. Ergod. Th. & Dynam. Sys. 17(2) (1997), 313330.CrossRefGoogle Scholar
[10]Duistermaat, J. J. and Guillemin, V. W.. The spectrum of positive elliptic operators and periodic bicharacteristics. Invent. Math. 29(1) (1975), 3979.CrossRefGoogle Scholar
[11]de la Llave, R.. Smooth conjugacy and S–R–B measures for uniformly and non-uniformly hyperbolic systems. Comm. Math. Phys. 150(2) (1992), 289320.CrossRefGoogle Scholar
[12]de la Llave, R.. Remarks on Sobolev regularity in Anosov systems. Ergod. Th. & Dynam. Sys. 21(4) (2001), 11391180.CrossRefGoogle Scholar
[13]de la Llave, R.. Rigidity of higher-dimensional conformal Anosov systems. Ergod. Th. & Dynam. Sys. 22(6) (2002), 18451870.CrossRefGoogle Scholar
[14]de la Llave, R.. Bootstrap of regularity for integrable solutions of cohomology equations. Modern Dynamical Systems and Applications. Cambridge University Press, Cambridge, 2004,pp. 405418.Google Scholar
[15]de la Llave, R.. Further rigidity properties of conformal Anosov systems. Ergod. Th. & Dynam. Sys. 24(5) (2004), 14251441.CrossRefGoogle Scholar
[16]de la Llave, R., Marco, J. M. and Moriyón, R.. Canonical perturbation theory of Anosov systems and regularity results for the Livšic cohomology equation. Ann. of Math. (2) 123(3) (1986), 537611.CrossRefGoogle Scholar
[17]de la Llave, R. and Obaya, R.. Regularity of the composition operator in spaces of Hölder functions. Discrete Contin. Dyn. Syst. 5(1) (1999), 157184.CrossRefGoogle Scholar
[18]de la Llave, R. and Sadovskaya, V.. On the regularity of integrable conformal structures invariant under Anosov systems. Discrete Contin. Dyn. Syst. 12(3) (2005), 377385.CrossRefGoogle Scholar
[19]de la Llave, R. and Windsor, A.. Smooth dependence on parameters of solution of cohomology equations over anosov systems and applications to cohomology equations on diffeomorphism groups, 2008. arXiv:0809.1235.Google Scholar
[20]Dolgopyat, D.. Livsič theory for compact group extensions of hyperbolic systems. Mosc. Math. J. 5(1) (2005), 5567.CrossRefGoogle Scholar
[21]Flaminio, L. and Forni, G.. On the cohomological equation for nilflows. J. Mod. Dyn. 1(1) (2007), 3760.CrossRefGoogle Scholar
[22]Fisher, D. and Margulis, G. A.. Local rigidity for cocycles. Surveys in Differential Geometry, Vol. VIII (Boston, MA, 2002) (Surveys in Differential Geometry, VIII). International Press, Somerville, MA, 2003, pp. 191234.Google Scholar
[23]Guillemin, V. and Kazhdan, D.. Some inverse spectral results for negatively curved 2-manifolds. Topology 19(3) (1980), 301312.CrossRefGoogle Scholar
[24]Guillemin, V. and Kazhdan, D.. Some inverse spectral results for negatively curved n-manifolds. Geometry of the Laplace Operator (Proc. Sympos. Pure Math., University of Hawaii, Honolulu, Hawaii, 1979) (Proceedings of Symposia in Pure Mathematics, XXXVI). American Mathematical Society, Providence, RI, 1980, pp. 153180.Google Scholar
[25]Ghering, F. W. and Palka, B.. Quasi-conformal maps, manuscript.Google Scholar
[26]Goetze, E. R. and Spatzier, R. J.. On Livšic’s theorem, superrigidity, and Anosov actions of semisimple Lie groups. Duke Math. J. 88(1) (1997), 127.CrossRefGoogle Scholar
[27]Hurder, S. and Katok, A.. Differentiability, rigidity and Godbillon–Vey classes for Anosov flows. Publ. Math. Inst. Hautes Études Sci. 72 (1990), 561 (published in 1991).CrossRefGoogle Scholar
[28]Hirsch, M., Palis, J., Pugh, C. and Shub, M.. Neighborhoods of hyperbolic sets. Invent. Math. 9 (1969/1970), 121134.CrossRefGoogle Scholar
[29]Hirsch, M. W., Pugh, C. C. and Shub, M.. Invariant Manifolds (Lecture Notes in Mathematics, 583). Springer, Berlin, 1977.CrossRefGoogle Scholar
[30]Jenkinson, O.. Smooth cocycle rigidity for expanding maps, and an application to Mostow rigidity. Math. Proc. Cambridge Philos. Soc. 132(3) (2002), 439452.CrossRefGoogle Scholar
[31]Journé, J.-L.. A regularity lemma for functions of several variables. Rev. Mat. Iberoamericana 4(2) (1988), 187193.CrossRefGoogle Scholar
[32]Kalinin, B.. Livsic theorem for matrix cocycles, 2008. arXiv:0808.0350.Google Scholar
[33]Katok, S.. Approximate solutions of cohomological equations associated with some Anosov flows. Ergod. Th. & Dynam. Sys. 10(2) (1990), 367379.CrossRefGoogle Scholar
[34]Katok, A. and Hasselblatt, B.. Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge, 1995, (with a supplementary chapter by Katok and Leonardo Mendoza).CrossRefGoogle Scholar
[35]Katok, A. and Niţică, V.. Rigidity of higher rank abelian cocycles with values in diffeomorphism groups. Geom. Dedicata 124 (2007), 109131.CrossRefGoogle Scholar
[36]Kalinin, B. and Sadovskaya, V.. On local and global rigidity of quasi-conformal Anosov diffeomorphisms. J. Inst. Math. Jussieu 2(4) (2003), 567582.CrossRefGoogle Scholar
[37]Kalinin, B. and Sadovskaya, V.. On anosov diffeomorphisms with asymptotically conformal periodic data. Ergod. Th. & Dynam. Sys. 29(1) (2009), 117136.CrossRefGoogle Scholar
[38]Livšic, A. N.. Certain properties of the homology of Y-systems. Mat. Zametki 10 (1971), 555564.Google Scholar
[39]Livšic, A. N.. Cohomology of dynamical systems. Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 12961320.Google Scholar
[40]Livšic, A. N.. The homology of dynamical systems. Uspekhi Mat. Nauk 27(3(165)) (1972), 203204.Google Scholar
[41]Livšic, A. N. and Sinaĭ, J. G.. Invariant measures that are compatible with smoothness for transitive C-systems. Dokl. Akad. Nauk SSSR 207 (1972), 10391041.Google Scholar
[42]Mather, J. N.. Characterization of Anosov diffeomorphisms. Indag. Math. 30 (1968), 479483.CrossRefGoogle Scholar
[43]Moore, C. C.. Exponential decay of correlation coefficients for geodesic flows. Group Representations, Ergodic Theory, Operator Algebras, and Mathematical Physics (Berkeley, CA, May, 1984) (Mathematical Sciences Research Institute Publications, 6). Springer, New York, 1987, pp. 163181.CrossRefGoogle Scholar
[44]Mostow, G. D.. Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms. Publ. Math. Inst. Hautes Études Sci. 34 (1968), 53104.CrossRefGoogle Scholar
[45]Mostow, G. D.. Strong Rigidity of Locally Symmetric Spaces (Annals of Mathematics Studies, 78). Princeton University Press, Princeton, NJ, 1973.Google Scholar
[46]Nicol, M. and Pollicott, M.. Livšic’s theorem for semisimple Lie groups. Ergod. Th. & Dynam. Sys. 21(5) (2001), 15011509.CrossRefGoogle Scholar
[47]Nicol, M. and Scott, A.. Livšic theorems and stable ergodicity for group extensions of hyperbolic systems with discontinuities. Ergod. Th. & Dynam. Sys. 23(6) (2003), 18671889.CrossRefGoogle Scholar
[48]Niţică, V. and Török, A.. Cohomology of dynamical systems and rigidity of partially hyperbolic actions of higher-rank lattices. Duke Math. J. 79(3) (1995), 751810.CrossRefGoogle Scholar
[49]Niţică, V. and Török, A.. Regularity of the transfer map for cohomologous cocycles. Ergod. Th. & Dynam. Sys. 18(5) (1998), 11871209.CrossRefGoogle Scholar
[50]Niţică, V. and Török, A.. Local rigidity of certain partially hyperbolic actions of product type. Ergod. Th. & Dynam. Sys. 21(4) (2001), 12131237.CrossRefGoogle Scholar
[51]Niţică, V. and Török, A.. On the cohomology of Anosov actions. Rigidity in Dynamics and Geometry (Cambridge, 27–31 March 2000). Springer, Berlin, 2002, pp. 345361.CrossRefGoogle Scholar
[52]Niţicǎ, V. and Török, A.. Cocycles over abelian TNS actions. Geom. Dedicata 102 (2003), 6590.CrossRefGoogle Scholar
[53]Nicol, M. and Török, A.. Whitney regularity for solutions to the coboundary equation on Cantor sets. Math. Phys. Electron. J. 13(Paper 6) (2007), 20 (electronic).Google Scholar
[54]Parry, W.. The Livšic periodic point theorem for non-abelian cocycles. Ergod. Th. & Dynam. Sys. 19(3) (1999), 687701.CrossRefGoogle Scholar
[55]Pesin, Y. B.. Lectures on partial hyperbolicity and stable ergodicity (Zurich Lectures in Advanced Mathematics, 1). European Mathematical Society (EMS), Zürich, 2004.CrossRefGoogle Scholar
[56]Pollicott, M.. Local Hölder regularity of densities and Livsic theorems for non-uniformly hyperbolic diffeomorphisms. Discrete Contin. Dyn. Syst. 13(5) (2005), 12471256.CrossRefGoogle Scholar
[57]Parry, W. and Pollicott, M.. The Livšic cocycle equation for compact Lie group extensions of hyperbolic systems. J. Lond. Math. Soc. (2) 56(2) (1997), 405416.CrossRefGoogle Scholar
[58]Parry, W. and Pollicott, M.. Skew products and Livsic theory. Representation Theory, Dynamical Systems, and Asymptotic Combinatorics (American Mathematical Society Translations, Series 2, 217). American Mathematical Society, Providence, RI, 2006, pp. 139165.Google Scholar
[59]Pollicott, M. and Walkden, C. P.. Livšic theorems for connected Lie groups. Trans. Amer. Math. Soc. 353(7) (2001), 28792895 (electronic).CrossRefGoogle Scholar
[60]Pollicott, M. and Yuri, M.. Regularity of solutions to the measurable Livsic equation. Trans. Amer. Math. Soc. 351(2) (1999), 559568.CrossRefGoogle Scholar
[61]Sadovskaya, V.. On uniformly quasiconformal Anosov systems. Math. Res. Lett. 12(2–3) (2005), 425441.CrossRefGoogle Scholar
[62]Schmidt, K.. Remarks on Livšic’ theory for nonabelian cocycles. Ergod. Th. & Dynam. Sys. 19(3) (1999), 703721.CrossRefGoogle Scholar
[63]Sinaĭ, J. G.. Gibbs measures in ergodic theory. Uspekhi Mat. Nauk 27(4(166)) (1972), 2164.Google Scholar
[64]Väisälä, J.. Lectures on n-Dimensional Quasiconformal Mappings (Lecture Notes in Mathematics, 229). Springer, Berlin, 1971.CrossRefGoogle Scholar
[65]Veech, W. A.. Periodic points and invariant pseudomeasures for toral endomorphisms. Ergod. Th. & Dynam. Sys. 6(3) (1986), 449473.CrossRefGoogle Scholar
[66]Walkden, C. P.. Livšic regularity theorems for twisted cocycle equations over hyperbolic systems. J. Lond. Math. Soc. (2) 61(1) (2000), 286300.CrossRefGoogle Scholar
[67]Walkden, C. P.. Livšic theorems for hyperbolic flows. Trans. Amer. Math. Soc. 352(3) (2000), 12991313.CrossRefGoogle Scholar
[68]Yue, C.. Quasiconformality in the geodesic flow of negatively curved manifolds. Geom. Funct. Anal. 6(4) (1996), 740750.CrossRefGoogle Scholar
[69]Zimmer, R. J.. Ergodic Theory and Semisimple Groups (Monographs in Mathematics, 81). Birkhäuser, Basel, 1984.CrossRefGoogle Scholar