Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-27T09:15:14.768Z Has data issue: false hasContentIssue false

Invariant sets and nilpotency of endomorphisms of algebraic sofic shifts

Published online by Cambridge University Press:  15 February 2024

TULLIO CECCHERINI-SILBERSTEIN*
Affiliation:
Dipartimento di Ingegneria, Università del Sannio, 82100 Benevento, Italy
MICHEL COORNAERT
Affiliation:
Université de Strasbourg, CNRS, IRMA UMR 7501, F-67000 Strasbourg, France (e-mail: michel.coornaert@math.unistra.fr)
XUAN KIEN PHUNG
Affiliation:
Département d’Informatique et de Recherche Opérationnelle, Université de Montréal, Montréal, Québec H3T 1J4, Canada Département de Mathématiques et de Statistique, Université de Montréal, Montréal, Québec, H3T 1J4, Canada (e-mail: phungxuankien1@gmail.com)

Abstract

Let G be a group and let V be an algebraic variety over an algebraically closed field K. Let A denote the set of K-points of V. We introduce algebraic sofic subshifts ${\Sigma \subset A^G}$ and study endomorphisms $\tau \colon \Sigma \to \Sigma $. We generalize several results for dynamical invariant sets and nilpotency of $\tau $ that are well known for finite alphabet cellular automata. Under mild assumptions, we prove that $\tau $ is nilpotent if and only if its limit set, that is, the intersection of the images of its iterates, is a singleton. If moreover G is infinite, finitely generated and $\Sigma $ is topologically mixing, we show that $\tau $ is nilpotent if and only if its limit set consists of periodic configurations and has a finite set of alphabet values.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aanderaa, S. and Lewis, H. R.. Linear sampling and the $\forall \exists \forall$ case of the decision problem. J. Symb. Log. 39 (1974), 519548.CrossRefGoogle Scholar
Aubrun, N., Barbieri, S. and Sablik, M.. A notion of effectiveness for subshifts on finitely generated groups. Theoret. Comput. Sci. 661 (2017), 3555.CrossRefGoogle Scholar
Ax, J.. Injective endomorphisms of varieties and schemes. Pacific J. Math. 31 (1969), 17.CrossRefGoogle Scholar
Ballier, A.. Propriété structurelle, combinatoires et logiques des pavages. PhD Thesis, Aix-Marseille Université, 2009.Google Scholar
Ballier, A., Durand, B. and Jeandel, E.. Structural aspects of tilings. STACS 2008: 25th International Symposium on Theoretical Aspects of Computer Science (Leibniz International Proceedings in Informatics, 1). Schloss Dagstuhl - Leibniz Center for Informatics (LZI), Wadern, 2008, pp. 6172.Google Scholar
Bartholdi, L. and Salo, V.. Simulations and the lamplighter group. Groups Geom. Dyn. 16 (2022), 14611514.CrossRefGoogle Scholar
Berger, R.. The undecidability of the domino problem. Mem. Amer. Math. Soc. 66 (1966), 72.Google Scholar
Boyle, M., Buzzi, J. and Gómez, R.. Almost isomorphism for countable state Markov shifts. J. Reine Angew. Math. 592 (2006), 2347.Google Scholar
Ceccherini-Silberstein, T. and Coornaert, M.. Induction and restriction of cellular automata. Ergod. Th. & Dynam. Sys. 29 (2009), 371380.CrossRefGoogle Scholar
Ceccherini-Silberstein, T. and Coornaert, M.. Cellular Automata and Groups (Springer Monographs in Mathematics). Springer-Verlag, Berlin, 2010.CrossRefGoogle Scholar
Ceccherini-Silberstein, T. and Coornaert, M.. On algebraic cellular automata. J. Lond. Math. Soc. (2) 84 (2011), 541558.CrossRefGoogle Scholar
Ceccherini-Silberstein, T. and Coornaert, M.. Surjunctivity and reversibility of cellular automata over concrete categories. Trends in Harmonic Analysis (Springer INdAM Series, 3). Ed. Picardello, M. A.. Springer, Milan, 2013, pp. 91133.CrossRefGoogle Scholar
Ceccherini-Silberstein, T. and Coornaert, M.. Exercises in Cellular Automata and Groups (Springer Monographs in Mathematics). Springer, Cham, 2023.CrossRefGoogle Scholar
Ceccherini-Silberstein, T., Coornaert, M. and Phung, X. K.. On injective endomorphisms of symbolic schemes. Comm. Algebra 47 (2019), 48244852.CrossRefGoogle Scholar
Ceccherini-Silberstein, T., Coornaert, M. and Phung, X. K.. On the Garden of Eden theorem for endomorphisms of symbolic algebraic varieties. Pacific J. Math. 306 (2020), 3166.CrossRefGoogle Scholar
Ceccherini-Silberstein, T., Coornaert, M. and Phung, X. K.. On linear shifts of finite type and their endomorphisms. J. Pure Appl. Algebra 226 (2022), Paper no. 106962, 27 pp.CrossRefGoogle Scholar
Ceccherini-Silberstein, T., Coornaert, M. and Phung, X. K.. First-order model theory and Kaplansky’s stable finiteness conjecture. Preprint, 2023, arXiv:2310.09451.Google Scholar
Culik, K., Pachl, J. and Yu, S.. On the limit sets of cellular automata. SIAM J. Comput. 18 (1989), 831842.CrossRefGoogle Scholar
Cyr, V., Franks, J. and Kra, B.. The spacetime of a shift endomorphism. Trans. Amer. Math. Soc. 371 (2019), 461488.CrossRefGoogle Scholar
Gromov, M.. Endomorphisms of symbolic algebraic varieties. J. Eur. Math. Soc. (JEMS) 1 (1999), 109197.CrossRefGoogle Scholar
Grothendieck, A.. Éléments de géométrie algébrique. I. Le langage des schémas. Publ. Math. Inst. Hautes Études Sci. 4 (1960), 5228.CrossRefGoogle Scholar
Grothendieck, A.. Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I. Publ. Math. Inst. Hautes Études Sci. 20 (1964), 5259.CrossRefGoogle Scholar
Grothendieck, A.. Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III. Publ. Math. Inst. Hautes Études Sci. 28 (1966), 5255.CrossRefGoogle Scholar
Guillon, P. and Richard, G.. Nilpotency and limit sets of cellular automata. Mathematical Foundations of Computer Science 2008 (Lecture Notes in Computer Science, 5162). Eds. Ochmański, E. and Tyszkiewicz, J.. Springer, Berlin, 2008, pp. 375386.CrossRefGoogle Scholar
Kari, J.. The nilpotency problem of one-dimensional cellular automata. SIAM J. Comput. 21 (1992), 571586.CrossRefGoogle Scholar
Kitchens, B. and Schmidt, K.. Automorphisms of compact groups. Ergod. Th. & Dynam. Sys. 9 (1989), 691735.CrossRefGoogle Scholar
Kitchens, B. P.. Expansive dynamics on zero-dimensional groups. Ergod. Th. & Dynam. Sys. 21 (1987), 249261.CrossRefGoogle Scholar
Kitchens, B. P.. Symbolic Dynamics. One-Sided, Two-Sided and Countable State Markov Shifts (Universitext). Springer-Verlag, Berlin, 1998.Google Scholar
Lima, Y. and Sarig, M.. Symbolic dynamics for three-dimensional flows with positive topological entropy. J. Eur. Math. Soc. (JEMS) 21 (2019), 199256.CrossRefGoogle Scholar
Lind, D. and Marcus, B.. An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge, 1995.CrossRefGoogle Scholar
Liu, Q.. Algebraic Geometry and Arithmetic Curves (Oxford Graduate Texts in Mathematics, 6). Oxford University Press, Oxford, 2002; translated from the French by R. Erné, Oxford Science Publications.CrossRefGoogle Scholar
Meyerovitch, T. and Salo, V.. On pointwise periodicity in tilings, cellular automata, and subshifts. Groups Geom. Dyn. 13 (2019), 549578.CrossRefGoogle Scholar
Milne, J. S.. Algebraic Groups: The Theory of Group Schemes of Finite Type Over a Field (Cambridge Studies in Advanced Mathematics, 170). Cambridge University Press, Cambridge, 2017.CrossRefGoogle Scholar
Milnor, J.. On the entropy geometry of cellular automata. Complex Systems 2 (1988), 357385.Google Scholar
Moore, E. F.. Machine Models of Self-Reproduction (Proceedings of Symposia in Applied Mathematics, 14). American Mathematical Society, Providence, 1963, pp. 1734.Google Scholar
Myhill, J.. The converse of Moore’s Garden-of-Eden theorem. Proc. Amer. Math. Soc. 14 (1963), 685686.Google Scholar
Osipenko, G.. Dynamical Systems, Graphs, and Algorithms (Lecture Notes in Mathematics, 1889). Springer-Verlag, Berlin, 2007. Appendix A by N. B. Ampilova and Appendix B by D. Fundinger.Google Scholar
Ovchinnikov, A., Pogudin, G. and Scanlon, T.. Effective difference elimination and Nullstellensatz. J. Eur. Math. Soc. (JEMS) 22(8) (2020), 24192452.CrossRefGoogle Scholar
Phung, X. K.. On sofic groups, Kaplansky’s conjectures, and endomorphisms of pro-algebraic groups. J. Algebra 562 (2020), 537586.CrossRefGoogle Scholar
Phung, X. K.. Weakly surjunctive groups and symbolic group varieties. Preprint, 2021, arXiv:2111.13607.Google Scholar
Phung, X. K.. LEF-groups and endomorphisms of symbolic varieties. Preprint, 2021, arXiv:2112.00603.Google Scholar
Phung, X. K.. On Dynamical Finiteness Properties of Algebraic Group Shifts. Israel J. Math. 252(1) (2022), 355398.CrossRefGoogle Scholar
Phung, X. K.. Shadowing for families of endomorphisms of generalized group shifts. Discrete Contin. Dyn. Syst. 42(1) (2022), 285299.CrossRefGoogle Scholar
Phung, X. K.. On linear non-uniform cellular automata: duality and dynamics. Preprint, 2022, arXiv:2208.13069.Google Scholar
Phung, X. K.. On images of subshifts under embeddings of symbolic varieties. Ergod. Th. & Dynam. Sys. 43(9) (2023), 31313149.CrossRefGoogle Scholar
Phung, X. K.. A geometric generalization of Kaplansky’s direct finiteness conjecture. Proc. Amer. Math. Soc. 151 (2023), 28632871.CrossRefGoogle Scholar
Phung, X. K.. On symbolic group varieties and dual surjunctivity. Groups Geom. Dyn. doi:10.4171/GGD/749. Published online 9 November 2023.CrossRefGoogle Scholar
Phung, X. K.. Stable finiteness of twisted group rings and noisy linear cellular automata. Canad. J. Math. doi:10.4153/S0008414X23000329. Published online 22 May 2023.Google Scholar
Robinson, R.. Undecidability and nonperiodicity for tilings of the plane. Invent. Math. 12 (1971), 177209.CrossRefGoogle Scholar
Salo, V.. On nilpotency and asymptotic nilpotency of cellular automata. Cellular Automata and Discrete Complex Systems and 3rd Int. Symp. Journées Automates Cellulaires, AUTOMATA & JAC 2012 (La Marana, Corsica, 201) (Electronic Proceedings in Theoretical Computer Science, 90). Ed. E. Formenti. (Open Publishing Association, 2012), pp. 8696.Google Scholar
Salo, V.. Strict asymptotic nilpotency in cellular automata. Cellular Automata and Discrete Complex Systems (Lecture Notes in Computer Science, 10248). Eds. Dennunzio, A., Formenti, E., Manzoni, L. and Porreca, A. E.. Springer, Cham, 2017, pp. 315.CrossRefGoogle Scholar
Sarig, M.. Thermodynamic formalism for countable Markov shifts. Ergod. Th. & Dynam. Sys. 19 (1999), 15651593.CrossRefGoogle Scholar
Sarig, M.. Symbolic dynamics for surface diffeomorphisms with positive entropy. J. Amer. Math. Soc. 26 (2013), 341426.CrossRefGoogle Scholar
Schmidt, K.. Dynamical Systems of Algebraic Origin (Progress in Mathematics, 128). Birkhäuser Verlag, Basel, 1995.Google Scholar
Shub, M.. Global Stability of Dynamical Systems. Springer-Verlag, New York, 1987; with the collaboration of A. Fathi and R. Langevin, translated from the French by J. Christy.CrossRefGoogle Scholar
Tomašić, I. and Wibmer, M.. Difference Galois theory and dynamics. Adv. Math. 402 (2022), 108328.CrossRefGoogle Scholar
Vakil, R.. MATH 216: Foundations of algebraic geometry. Class Notes, 2010. Available at https://api.semanticscholar.org/CorpusID:124268419.Google Scholar
von Neumann, J.. Theory of Self-Reproducing Automata. Ed. A. W. Burks. University of Illinois Press, Champaign, IL, 1966.Google Scholar
Wibmer, M.. Finiteness properties of affine difference algebraic groups. Int. Math. Res. Not. IMRN 2022(1) (2022), 506555.CrossRefGoogle Scholar
Wolfram, S.. Universality and complexity in cellular automata. Phys. D 10 (1984), 135.CrossRefGoogle Scholar
Wolfram, S.. A New Kind of Science. Wolfram Media, Inc., Champaign, IL, 2002.Google Scholar