Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T01:27:31.265Z Has data issue: false hasContentIssue false

Generic non-singular Poisson suspension is of type III1

Published online by Cambridge University Press:  05 March 2021

ALEXANDRE I. DANILENKO
Affiliation:
B. Verkin Institute for Low Temperature Physics & Engineering of Ukrainian National Academy of Sciences, 47 Lenin Ave., Kharkiv61164, Ukraine (e-mail: alexandre.danilenko@gmail.com)
ZEMER KOSLOFF*
Affiliation:
Einstein Institute of Mathematics, Hebrew University of Jerusalem, Givat Ram. Jerusalem9190401, Israel
EMMANUEL ROY
Affiliation:
Laboratoire Analyse, Géométrie et Applications, CNRS UMR 7539, Université Paris 13, Institut Galilée, 99 avenue Jean-Baptiste Clément, F-93430Villetaneuse, France (e-mail: roy@math.univ-paris13.fr)

Abstract

It is shown that for a dense $G_\delta $ -subset of the subgroup of non-singular transformations (of a standard infinite $\sigma $ -finite measure space) whose Poisson suspensions are non-singular, the corresponding Poisson suspensions are ergodic and of Krieger’s type III1.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaronson, J.. An Introduction to Infinite Ergodic Theory. American Mathematical Society, Providence, RI, 1997.CrossRefGoogle Scholar
Arano, Y., Isono, Y. and Marrakch, A.. Ergodic theory of affine isometric actions on Hilbert spaces. Preprint, 2019, arXiv:1911.04272.Google Scholar
Choksi, J. R., Hawkins, J. M. and Prasad, V. S.. Abelian cocycles for nonsingular ergodic transformations and the genericity of type ${\rm III}_1$ transformations. Monatsh. Math. 103 (1987), 187205.CrossRefGoogle Scholar
Danilenko, A. I.. Weak mixing for nonsingular Bernoulli actions of countable amenable groups. Proc. Amer. Math. Soc. 147 (2019), 44394450.CrossRefGoogle Scholar
Danilenko, A. I., Kosloff, Z. and Roy, E.. Nonsingular Poisson suspensions. J. Anal. Math. accepted. Preprint, 2020, arXiv:2002.02207.Google Scholar
Danilenko, A. I. and Lemańczyk, M.. K-property for Maharam extensions of nonsingular Bernoulli and Markov shifts. Ergod. Th. & Dynam. Sys. 39 (2019), 32923321.CrossRefGoogle Scholar
Danilenko, A. I. and Silva, C. E.. Ergodic Theory: Non-Singular Transformations (Mathematics of Complexity and Dynamical Systems, 1–3). Springer, New York, 2012, pp. 329356.Google Scholar
Feldman, J. and Moore, C. C.. Ergodic equivalence relations, cohomology and von Neumann algebras, I. Trans. Amer. Math. Soc. 234 (1977), 289324.CrossRefGoogle Scholar
Hawkins, J. M.. Amenable relations for endomorphisms. Trans. Amer. Math. Soc. 343 (1994), 169191.CrossRefGoogle Scholar
Kakutani, S.. On equivalence of infinite product measures. Ann. of Math. 49 (1948), 214224.CrossRefGoogle Scholar
Kosloff, Z.. On the K property for Maharam extensions of Bernoulli shifts and a question of Krengel. Israel J. Math. 199 (2014) 485506.CrossRefGoogle Scholar
Kosloff, Z.. Proving ergodicity by divergence of ergodic sums. Studia Math. 248 (2019), 191215.CrossRefGoogle Scholar
Neretin, Yu.. Categories of Symmetries and Infinite-Dimensional Groups. Oxford University Press, Oxford, 1996.Google Scholar
Schmidt, K.. Cocycles on Ergodic Transformation Groups (MacMillan Lectures in Mathematics, 1). Macmillan, Delhi, 1977.Google Scholar
Shimomura, H.. Poisson measures on the configuration space and unitary representations of the group of diffeomorphisms. J. Math. Kyoto Univ. 34 (1994), 599614.Google Scholar
Silva, C. E. and Thieullen, P.. The subadditive ergodic theorem and recurrence properties of Markovian transformations. J. Math. Anal. Appl. 154 (1991), 8399.CrossRefGoogle Scholar
Silva, C. E. and Thieullen, P.. A skew product entropy for nonsingular transformations. J. Lond. Math. Soc. 52 (1995), 497516.CrossRefGoogle Scholar