Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-22T09:21:29.609Z Has data issue: false hasContentIssue false

XX.—Cytological Studies of Melaniidæ (Mollusca) with Special Reference to Parthenogenesis and Polyploidy. II. A Study of Meiosis in the Rare Males of the Polyploid Race of Melanoides tuberculatus and Melanoides lineatus

Published online by Cambridge University Press:  06 July 2012

Joseph Jacob
Affiliation:
Zoology Department, Annamalai University, Annamalai Nagar, India.

Synopsis

In the rare males of the polyploid race of Melanoides tuberculatus, which constitute about 3 per cent of the population, spermatogenesis has been studied in detail and compared with certain stages of spermatogenesis in the rare males of M. lineatus, which constitute 0·01 per cent of the population. The occurrence of the rare males in these parthenogenetic Melanoides provides an exceptional opportunity for studying the pairing behaviour of the chromosomes and for obtaining a better understanding of the probable nature of the polyploidy involved. During spermatogenesis, the two usual meiotic divisions occur, but the different stages show univalents, bivalents, quadrivalents and bridge fragment configurations. Degeneration of sex cells occurs at different stages, but mostly at the spermatid stage and the sterility of the rare males may be said to be chromosomal. The significance of the various abnormal meiotic phenomena is discussed and it is suggested that autoallopolyploidy is involved. A conjectural scheme of the possible origin of the autoallopolyploid M. tuberculatus is also suggested and the interrelationships between parthenogenesis, polyploidy and hybridity discussed.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1958

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References to Literature

Ankel, W. E., 1930. “Die atypische spermatogenese von Janthina”, Z. Zellforsch., 11, 491.CrossRefGoogle Scholar
Böök, J. A., 1940. “Cytological studies in Triton”, Hereditas, 31, 177.CrossRefGoogle Scholar
Callan, H. G., 1941. “A trisomic grasshopper”, J. Hered., 32, 296.CrossRefGoogle Scholar
Callan, H. G., and Spurway, H., 1951. “A study of meiosis in interracial hybrids of the newt, Triturus cristatus”, J. Genet., 50, 235.CrossRefGoogle ScholarPubMed
Cappe De Baillon, P., and De, Vichet G., 1935. “Le mâle du Clonopsis gallica (Orthopt-phasmidæ)”, Ann. Soc. Ent. Fr., 104, 259.CrossRefGoogle Scholar
Cappe De Baillon, P., and De, Vichet G., 1940. “La parthénogénèse des espéces du genre Leptynia Pant. (Orthopt. Phasmidæ)”, Bull Biol., 74, 43.Google Scholar
Clausen, J., 1926. “Genetical and cytological investigations on Viola tricolor. L and V. arvensis. Murr”, Hereditas, 8, 1.CrossRefGoogle Scholar
Crew, F. A. E., and Koller, P. C., 1936. “Genetical and cytological studies of the intergeneric hybrid of Cairina moschata and Anas platyrhyncha”, Proc. Roy. Soc. Edin., 56, 210.CrossRefGoogle Scholar
Darlington, C. D., 1929. “Meiosis in polyploids. II. Aneuploid Hyacinthus”, J. Genet., 21, 17.CrossRefGoogle Scholar
Darlington, C. D., 1937. Recent Advances in Cytology. London.Google Scholar
Darlington, C. D., 1953. “Polyploidy in animals”, Nature, Lond., 171, 191.CrossRefGoogle ScholarPubMed
Dobzhansky, Th., 1934. “Studies on hybrid sterility. I. Spermatogenesis in pure and hybrid Drosophila pseudoobscura”, Z. Zellforsch., 21, 169.CrossRefGoogle Scholar
Dobzhansky, Th., 1941. Genetics and the Origin of Species. C.U.P.Google Scholar
Fankhauser, G., 1945 a. “Maintenance of normal structure in heteroploid Salamander larvæ through compensation of changes in cell size by adjustment of cell number and cell shape”, J. Exp. Zool., 100, 445.CrossRefGoogle ScholarPubMed
Fankhauser, G., 1945 b. “The effects of changes in chromosome number on amphibian development”, Quart. Rev. Biol., 20, 20.Google Scholar
Federly, H., 1912. “Das Verhalten der Chromosomen bei der Spermatogenese der Schmetterlinge Pygaera anachoreta, curtula und pigra, sowie einiger ihrer Bastarde”, Z. Indukt. Abstamm-u. VererbLehre., 9, 1.Google Scholar
Federly, H., 1931. “Chromosomenanalyse der reziproken Bastarde zwischen Pygaera pigra und P. curtula sowie ihrer Rückkreutzungsbastarde”, Z. Zellforsch., 12, 772.CrossRefGoogle Scholar
Federly, H., 1932. “Die Bedeutung der Kreutzung für die Evolution”, Z. Naturw., 67, 364.Google Scholar
Gajewski, W., 1949. “On the behaviour of univalents at meiosis in some interspecific Geum hybrids”, Hereditas, 35, 221.CrossRefGoogle Scholar
Gates, E. R., 1953. “Polyploidy and the sex chromosomes”, Acta Biotheor., Leiden, 11, 27.CrossRefGoogle Scholar
Goldschmidt, E., 1953. “Multiple sex chromosome mechanism and polyploidy in animals”, J. Genet., 51, 434.CrossRefGoogle Scholar
Gross, F., 1932. “Untersuchungen über die Polyploidie und die Variabilität bei Artemia salina, Naturwissenschaften, 20, 962.CrossRefGoogle Scholar
Heilborn, O., 1934. “On the origin and preservation of Polyploidy”, Hereditas, 19, 233.CrossRefGoogle Scholar
Hyman, O. W., 1923. “Spermic dimorphism in Fasciolaria tulipa”, J. Morph., 37, 307.CrossRefGoogle Scholar
Jacob, J., 1957. “Cytological studies of Melaniidæ (Mollusca) with special reference to parthenogenesis and polyploidy. I. Oögenesis of the parthenogenetic species of Melanoides”, Trans. Roy. Soc. Edin., 63, 341.CrossRefGoogle Scholar
Jorgensen, C. A., 1928. “The experimental formation of heteroploid plants in the genus Solanum”, J. Genet., 14, 133.CrossRefGoogle Scholar
Karpechenko, G. D., 1927. “The production of polyploid gametes in hybrids”, Hereditas, 9, 349.CrossRefGoogle Scholar
Kihara, H., 1931. “Genomanalyse bei Triticum und Aegilops. II. Aegilotricum und Aegilops cylindrica”, Cytologia, Tokyo, 2, 106.CrossRefGoogle Scholar
Klingstedt, H., 1937. “On some tetraploid spermatocytes in Chrysochraon dispar (Orth.)”, Comment. Biol. Helsingf., 12, 194.Google Scholar
Koller, P. C., 1935. “Internal mechanics of chromosomes. IV. Salivary gland chromosomes of Drosophila”, Proc. Roy. Soc. Lond. B, 118, 371.Google Scholar
Kostoff, D., 1939. “Autosyndesis and structural hybridity in F1 hybrid Helianthus tuberosus L. × Helianthus annus L. and their sequences”, Genetics, 21, 285.Google Scholar
Levan, A., 1940. “The cytology of Allium amplectens and the occurrence in nature of its asynapsis”, Hereditas, 26, 353.CrossRefGoogle Scholar
Mcclintock, B., 1933. “The association of non homologous parts of chromosomes in the prophase of meiosis in Zea mays”, Z. Zellforsch., 19, 191.CrossRefGoogle Scholar
Mather, K., 1935. “Chromosome behaviour in a triploid wheat hybrid”, Z. Zellforsch., 23, 117.CrossRefGoogle Scholar
Meurman, O., 1929. “Association and types of chromosomes in Aucuba japonica”, Hereditas, 12, 179.CrossRefGoogle Scholar
Meves, F., 1902. “Uber oligopyrene und apyrene Spermien und über ihre Entstehung, nach Beobachtungen an Paludina und Pygaera”, Arch. Mikr. Anat., 61, 1.CrossRefGoogle Scholar
Moffett, A. A., 1936. “The origin and behaviour of chiasmata. XIII. Diploid and tetraploid Culex pipiens”, Cytologia, Tokyo, 7, 184.CrossRefGoogle Scholar
Muller, H. J., 1925. “Why polyploidy is rarer in animals than in plants”, Amer. Nat., 59, 346.CrossRefGoogle Scholar
Muntzing, A., 1934. “Chromosome fragmentation in a crepis hybrid”, Hereditas, 19, 284.CrossRefGoogle Scholar
Muntzing, A., and Prakken, R., 1940. “The mode of chromosome pairing in Phleum twins with 63 chromosomes and its cytogenetic consequences”, Hereditas, 26, 463.CrossRefGoogle Scholar
Pätau, K., 1935. “Chromosomenmorphologie bei Drosophila melanogaster und Drosophila simulans und ihre genetische Bedeutung”, Naturwissenschaften, 23, 537.CrossRefGoogle Scholar
Peacock, A. D., 1944. “Animal parthenogenesis, natural and artificial”, Proc. Roy. Phil. Soc. Glasg., 68, 99.Google Scholar
Pollister, A. W., and Pollister, P. F., 1943. “The relation between centriole and centromere in atypical spermatogenesis of viviparid snails”, Ann. N.Y. Acad. Sci., 45, 1.CrossRefGoogle Scholar
Richardson, M. M., 1936. “Structural hybridity in Lilium martagon Album × L. Lansonii”, J. Genet., 32, 411.CrossRefGoogle Scholar
Seiler, J., 1923. “Geschlechtschromosomenuntersuchungen an Psychiden. IV. Die Parthenogenese der Psychiden”, Zeit. Indukt. Abstamm-u. VererbLehre., 31, 1.Google Scholar
Seiler, J., 1927. “Ergebnisse aus der Kreutzung parthenogenetischer und Zweigeschlechtlicher Schmetterlinge”, Biol. Zbl., 47, 426.Google Scholar
Seiler, J., 1929. “ Ergebnisse aus der Kreutzung parthenogenetischer und Zweigeschlechtlicher Schmetterlinge. I. Die Keimdrusen der intersexen Fl-Raupen”, Arch. EntwMeck., 119,Google Scholar
Seiler, J., 1936. “Ergebnisse aus der Kreutzung parthenogenetischer und Zweigeschlechtlicher Schmetterlinge. IV. Entwicklungsmechanische. Bemerkungen uber die intersexen Fl-puppen aus den Solenobia triquetrella Kreuzungen”, Zeit. Indukt. Abstamm-u. VererbLehre., 72,Google Scholar
Seiler, J., 1939. “Zur Fortpflanzungsbiolgie einiger Solenobia Arten”, Mitt. Schweiz. Ent. Ges., 17, 1.Google Scholar
Seiler, J., 1942. “Resultate aus der Kreutzung parthenogenetischer und Zweigeschlechtlicher Schmetterlinge”, Arch. Klaus-Stift. VererbForsch., 17, 513.Google Scholar
Seiler, J., 1946. “Die Verbretiungsgebiete der Verschiedenen Rassen von Solenobia triquetrella (Psychidae) in der Schweiz”, Rev. Suisse Zool., 53, 529.Google Scholar
Seshaiya, R. V., 1936. “Notes on the comparative anatomy of some Indian Melaniidæ with special reference to Melania (Radina) crenulata (Deshayes)”, J. Annamalai Univ., 5, 167.Google Scholar
Sikka, S. M., 1940. “Cytogenetics of Brassica hybrids and species”, J. Genet., 26, 441.CrossRefGoogle Scholar
Stebbins, G. L., 1947. “Types of polyploids, their classification and significance”, Advanc. Genet., 1, 403.CrossRefGoogle ScholarPubMed
Stebbins, G. L., 1950. Variation and Evolution in Plants. C.U.P.CrossRefGoogle Scholar
Sturtevant, A. H., 1926. “A cross over reducer in Drosophila melanogaster due to inversion of a section of the 3rd chromosome”, Biol. Zbl., 46, 697.Google Scholar
Suomalainen, E., 1940. “Polyploidy in parthenogenetic Curculionidæ”, Hereditas, 26, 51.CrossRefGoogle Scholar
Suomalainen, E., 1950. “Parthenogenesis in animals”, Advanc. Genet., 3, 193.CrossRefGoogle ScholarPubMed
Upcott, M., 1937. “The genetic structure of Tulipa. II”, J. Genet., 34, 339.CrossRefGoogle Scholar
Upcott, M., 1939. “The genetic structure of Tulipa. III. Meiosis in polyploids”, J. Genet., 37, 303.CrossRefGoogle Scholar
Vandel, A., 1928. “La parthénogénèse géographique: contribution a l'etude biologique et cytologique de la parthénogénèse naturelle, I.”, Bull. Biol., 62, 164.Google Scholar
Vandel, A., 1931. La Parthénogénèse. Paris.Google Scholar
Vandel, A., 1934. “La parthénogénèse géographique. II. Les Mâles triploides d'origine parthénogénètique de Trichoniscus (Spiloniscus) elizabethae Herold”, Bull. Biol., 68, 419.Google Scholar
Vandel, A., 1936. “L'Evolution de la parthénogénèse Naturelle”, C.R. XII. Int. Congr. Zool., Lisbonne.Google Scholar
Warmke, H. E., and Blakeslee, A. F., 1940. “The establishment of a diœcious race in Melandrium”, Amer. J. Bot., 27, 751.CrossRefGoogle Scholar
Westergaard, M., 1940. “Studies on cytology and sex determination in polyploid forms of Melandrium album”, Dansk. Bot. Ark., 10, 1.Google Scholar
White, M. J. D., 1933. “Tetraploid spermatocytes in a locust, Schistocerca gregaria”, Cytologia, Tokyo, 5, 135.CrossRefGoogle Scholar
White, M. J. D., 1945 and 1954. Animal Cytology and Evolution. C.U.P.Google Scholar
White, M. J. D., 1951. Genetics in the 20th Century. C.U.P.Google Scholar
Whiting, P. W., 1945. “The evolution of male haploidy”, Quart. Rev. Biol., 20, 231.CrossRefGoogle ScholarPubMed
Wilson, E. B., 1932. “Polyploidy and metaphase patterns”, J. Morph., 53, 443.Google Scholar