Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T04:57:22.267Z Has data issue: false hasContentIssue false

The sources of granitic melt in Deep Hot Zones

Published online by Cambridge University Press:  11 January 2017

Catherine Annen
Affiliation:
Section des Sciences de la Terre, Université de Genève, 13 rue des Maraîchers, 1205 Genève, Switzerland, e-mail: Catherine.annen@terre.unige.ch
Jonathan D. Blundy
Affiliation:
Department of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK
R. Stephen J. Sparks
Affiliation:
Department of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK

Abstract

A Deep Hot Zone develops when numerous mafic sills are repeatedly injected at Moho depth or are scattered in the lower crust. The melt generation is numerically modelled for mafic sill emplacement geometries by overaccretion, underaccretion or random emplacement, and for intrusion rates of 2, 5 and 10mm/yr. After an incubation period, melts are generated by incomplete crystallisation of the mafic magma and by partial melting of the crust. The first melts generated are residual from the mafic magmas that have low solidi due to concentration of H20 in the residual liquids. Once the solidus of the crust is reached, the ratio of crustal partial melt to residual melt increases to a maximum. If wet mafic magma, typical of arc environments, is injected in an amphibolitic crust, the residual melt is dominant over the partial melt, which implies that the generation of I-type granites is dominated by the crystallisation of mafic magma originated from the mantle and not by the partial melting of earlier underplated material. High ratios of crustal partial melt over residual melt are reached when sills are scattered in a metasedimentary crust, allowing the generation of S-type granites. The partial melting of a refractory granulitic crust intruded by dry, high-T mafic magma is limited and subordinate to the production of larger amount of residual melt in the mafic sills. Thus the generation of A-type granites by partial melting of a refractory crust would require a mechanism of selective extraction of the A-type melt.

Type
Research Article
Copyright
Copyright © The Royal Society of Edinburgh 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Annen, C., Blundy, J.D. & Sparks, R.S.J. 2006. The Genesis of Calcalkaline Intermediate and Silicic Magmas in Deep Crustal Hot Zones. Journal of Petrology 47, 505-39. [Published online December 2005. doi:10.1093/petrology/egi084]CrossRefGoogle Scholar
Annen, C. & Sparks, R.S.J. 2002. Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust. Earth and Planetary Science Letters 203, 937-55.Google Scholar
Barbarin, B. 2005. Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: nature, origin, and relations with the hosts. Lithos 80, 155-77.Google Scholar
Barboza, S.A. & Bergantz, G.W. 1996. Dynamic model of dehydration melting motivated by a natural analogue: applications to the Ivra-Verbano zone. Transactions of the Royal Society of Edinburgh: Earth Sciences 87, 23-31.Google Scholar
Benn, K., Roest, W.R., Rochette, P., Evans, N.G. & Pignotta, G.S. 1999. Geophysical and structural signatures of syntectonic batholith construction: the South Mountain Batholith, Meguma Terrene, Nova Scotia. Geophysical Journal International 136, 144-58.Google Scholar
Bergantz, W. 1989. Underplating and partial melting: Implications for melt generation and extraction. Science 245, 1093-5.CrossRefGoogle ScholarPubMed
Blundy, J.D. & Sparks, R.S.J. 1992. Petrogenesis of mafic inclusions in granitoids of the Adamello massif, Italy. Journal of Petrology 33, 1039-104.CrossRefGoogle Scholar
Bonin, B. 2004. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos 78, 1-24.CrossRefGoogle Scholar
Bonin, B. 2007. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos 97, 1-29.Google Scholar
Bridgwater, D., Sutton, J. & Watterson, J. 1974. Crustal Downfolding Associated with Igneous Activity. Tectonophysics 21, 57-77.CrossRefGoogle Scholar
Brown, M. 1994. The Generation, Segregation, Ascent and Emplacement of Granite Magma - the Migmatite-to-Crustally-Derived-Granite Connection in Thickened Orogens. Earth-Science Reviews 36, 83-130.Google Scholar
Chappell, B.W. & White, J.R. 1984. I- and S-type granites in the Lachlan Fold Belt, southeastern Australia. In Xu, Keqin & Tu, Guangchi (eds) Geology of granites and their metallogenic relations, 87-101. Beijing: Science Press.Google Scholar
Chappell, B.W. & White, J.R. 2001. Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences 48, 489-99.CrossRefGoogle Scholar
Clemens, J.D., Holloway, J.R. & White, A.J.R. 1986. Origin of an a-Type Granite - Experimental Constraints. American Mineralogist 71, 317-24.Google Scholar
Clemens, J.D. & Mawer, C. K. 1992. Granitic Magma Transport by Fracture Propagation. Tectonophysics 204, 339-60.Google Scholar
Clemens, J.D. & Vielzeuf, D. 1987. Constraints on melting and magma production in the crust. Earth and Planetary Science Letters 86, 287-306.Google Scholar
Clemens, J.D. & Wall, W.J. 1981. Origin and crystallization of some peraluminous (S-type) granitic magmas. Canadian Mineralogist 19, 111-31.Google Scholar
Coleman, D.S., Frost, T.P. & Glazner, A.F. 1992. Evidence from the Lamarck Granodiorite for Rapid Late Cretaceous Crust Formation in California. Science 258, 1924-6.Google Scholar
Coleman, D.S., Glazner, A.F., Miller, J.S., Bradford, K.J., Frost, T.P., Joye, J.L. & Bachi, C. A. 1995. Exposure of Late Cretaceous layered mafic-felsic magma system in the central Sierra Nevada batholith, California. Contribution to Mineralogy and Petrology 120, 129-36.CrossRefGoogle Scholar
Coleman, D.S., Gray, W. & Glazner, A.F. 2004. Rethinking the emplacement and evolution of zoned plutons: Geochronologie evidence for incremental assembly of the Tuolumne Intrusive Suite, California. Geology 32, 433-6.Google Scholar
Collins, W.J., Beams, S.D., White, A.J.R. & Chappell, B.W. 1982. Nature and Origin of a-Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology 80, 189-200.CrossRefGoogle Scholar
Crisp, J. 1984. Rates of magma emplacement and volcanic output. Journal of Volcanology and Geothermal Research 20, 177-211.Google Scholar
Cruden, A.R. 1998. On the emplacement of tabular granites. Journal of the Geological Society 155, 853-62.Google Scholar
Cruden, A.R. & McCaffrey, K.J.W. 2001. Growth of plutons by floor subsidence: Implications for rates of emplacement, intrusion spacing and melt-extraction mechanisms. Physics and Chemistry of the Earth Part A-Solid Earth and Geodesy 26, 303-15.CrossRefGoogle Scholar
DePaolo, D.J. 1981a. A Neodymium and Strontium Isotopie Study of the Mesozoic Calc-Alkaline Granitic Batholiths of the Sierra-Nevada and Peninsular Ranges, California. Journal of Geophysical Research 86, 470-88.Google Scholar
DePaolo, D.J. 1981b. Trace-Element and Isotopie Effects of Combined Wallrock Assimilation and Fractional Crystallization. Earth and Planetary Science Letters 53, 189-202.CrossRefGoogle Scholar
Dimalanta, C., Taira, A., Yumul, G.P., Tokuyama, H. & Mochizuki, K. 2002. New rates of western Pacific island arc magmatism from seismic and gravity data. Earth and Planetary Science Letters 202, 105-15.Google Scholar
Domenick, M.A., Kistler, R.W., Dodge, F.C. W. & Tatsumoto, M. 1983. Nd and Sr Isotopie Study of Crustal and Mantle Inclusions from the Sierra-Nevada and Implications for Batholith Petrogenesis. Geological Society of America Bulletin 94, 713-19.2.0.CO;2>CrossRefGoogle Scholar
Ducea, M. & Saleeby, J. 1998. Crustal recycling beneath continental arcs: silica-rich glass inclusions in ultramafic xenoliths from the Sierra Nevada, California. Earth and Planetary Science Letters 156, 101-16.Google Scholar
Ducea, M.N. 2002. Constraints on the bulk composition and root foundering rates of continental arcs: A California arc perspective. Journal of Geophysical Research 107(Bll), 2304.Google Scholar
Dufek, J. & Bergantz, G.W. 2005. Lower Crustal Magma Genesis and Preservation: a Stochastic Framework for the Evaluation of Basalt-Crust Interaction. Journal of Petrology 46, 2167-95.CrossRefGoogle Scholar
England, P., Le Fort, P., Molnar, P. & Pêcher, A. 1992. Heat source for tertiary metamorphism and anatexis in the Annapurna-Manaslu region Central Nepal. Journal of Geophysical Research 97, 2107-28.CrossRefGoogle Scholar
England, P.C. & Thompson, A.B. 1984. Pressure-temperature-time paths of regional metamorphisms I. Heat transfer during the evolution of regions of thickened continental crust. Journal of Petrology 25, 894-928.Google Scholar
Fliedner, M.M. & Klemperer, S.L. 2000. Crustal transition from oceanic arc to continental arc, eastern Aleutian Islands and Alaska Peninsula. Earth and Planetary Science Letters 179, 567-79.Google Scholar
Fliedner, M.M., Klemperer, S.L. & Christensen, N.I. 2000. Three-dimensional seismic model of the Sierra Nevada arc, California, and its implications for crustal and upper mantle composition. Journal of Geophysical Research-Solid Earth 105, 10899-921.Google Scholar
Foden, J.D. & Green, D.H. 1992. Possible role of amphibole in the origin of andesite: some experimental and natural evidence. Contributions to Mineralogy and Petrology 109, 479-93.Google Scholar
Foland, K.A. & Allen, J.C. 1991. Magma Sources for Mesozoic Anorogenic Granites of the White Mountain Magma Series, New-England, USA. Contributions to Mineralogy and Petrology 109, 195-211.Google Scholar
Franke, W. 1992. Phanerozoic structures and events in Central Europe. In Bundell, D., Freeman, R. & Mueller, S. (eds) A continent revealed. The european geotraverse., 164-80. Cambridge: Cambridge University Press.Google Scholar
Fuchs, K., Bonjer, K.P., Gajewski, D., Luschen, E., Prodehl, C., Sandmeier, K.J., Wenzel, F. & Wilhelm, H. 1987. Crustal Evolution of the Rhinegraben Area .1. Exploring the Lower Crust in the Rhinegraben Rift by Unified Geophysical Experiments. Tectonophysics 141, 261-75.Google Scholar
Green, T.H. 1982. Anatexis of mafic crust and high pressure crystallisation of andesite. In Thorpe, R.S. (ed.) Andesites : Orogenia andesites and related rocks, 465-87. Chichester: John Wiley & Sons Ltd.Google Scholar
Harrison, T.M., Grove, M., Lovera, O.M. & Catlos, E.J. 1998. A model for the origin of Himalayan anatexis and inverted metamorphism. Journal of Geophysical Research 103, 27017-32.Google Scholar
Harrison, T.M., Grove, M., McKeegan, K., Coath, C.D., Lovera, O.M. & Le Fort, P. 1999. Origin and episodic emplacement of the Manaslu Intrusive Complex, Central Himalaya. Journal of Petrology 40, 3-19.Google Scholar
Hildreth, W. & Moorbath, S. 1988. Crustal contribution to arc magmatism in the Andes of Central Chile. Contributions to mineralogy and petrology 98, 455-89.CrossRefGoogle Scholar
Huppert, H.E. & Sparks, R.S.J. 1988. Melting of the roof of a chamber containing a hot, turbulently convecting fluid. Journal of Fluid Mechanics 188, 107-31.Google Scholar
Jackson, M.D., Cheadle, M.J. & Atherton, M.P. 2003. Quantitative modeling of granitic melt generation and segregation in the continental crust. Journal of Geophysical Research 108 (B7).Google Scholar
Jaupart, C. & Provost, A. 1985. Heat Focusing, Granite Genesis and Inverted Metamorphic Gradients in Continental Collision Zones. Earth and Planetary Science Letters 73, 385-97.Google Scholar
Jull, M. & Kelemen, P.B. 2001. On the conditions for lower crustal convective instability. Journal of Geophysical Research-Solid Earth 106, 6423-46.Google Scholar
Kagami, H., Ulmer, P., Hansmann, W., Dietrich, V. & Steiger, R.H. 1991. Nd-Sr isotopie and geochemical characteristics of the Southern Adamello (Northern Italy) intrusives: Implications for crustal versus mantle origin. Journal of Geophysical Research 96, 14331-16.Google Scholar
Kavanagh, J.L., Menand, T. & Sparks, R.S.J. 2006. An experimental investigation of sill formation and propagation in layered elastic media. Earth and Planetary Science Letters 245, 799-813.Google Scholar
Kerr, A. & Fryer, B.J. 1993. Nd Isotope Evidence for Crust Mantle Interaction in the Generation of a-Type Granitoid Suites in Labrador, Canada. Chemical Geology 104, 39-60.Google Scholar
Kistler, R.W., Chappell, B.W., Peck, D.L. & Bateman, P.C. 1986. Isotopie Variation in the Tuolumne Intrusive Suite, Central Sierra-Nevada, California. Contributions to Mineralogy and Petrology 94, 205-20.CrossRefGoogle Scholar
Kistler, R.W. & Peterman, Z.E. 1973. Variations in Sr, Rb, K, Na, and Initial Sr-87-Sr-86 in Mesozoic Granitic Rocks and Intruded Wall Rocks in Central California. Geological Society of America Bulletins, 3489-511.Google Scholar
Liu, J., Bohlen, S.R. & Ernst, W.G. 1996. Stability of hydrous phases in subducting oceanic crust. Earth and Planetary Science Letters 143, 161-71.Google Scholar
Lucassen, F., Trumbull, R., Franz, G., Creixell, C., Vasquez, P., Romer, R.L. & Figueroa, O. 2004. Distinguishing crustal recycling and juvenile additions at active continental margins: the Paleozoic to recent compositional evolution of the Chilean Pacific margin (36-41(circle)S). Journal of South American Earth Sciences 17, 103-19.Google Scholar
McKenzie, D. 1984. The generation and compaction of partially molten rock. Journal of Petrology 25, 713-65.Google Scholar
Müntener, O., Kelemen, P.B. & Grove, T.L. 2001. The role of H20 during crystallization of primitive arc magmas under uppermost mantle condition and genesis of igneous pyroxenites: an experimental study. Contribution to Mineralogy and Petrology 141, 643-58.Google Scholar
Mysen, B. O. 1981. Melting curves of rock and viscosity of rock-forming melts. In Touloukian, Y.S., Judd, W.D. & Roy, R.F. (eds) Physical Properties of rocks and minerals. McGraw-Hill/ CINDAS. Data series on material properties 2, 361-407.Google Scholar
Patiño Douce, A. 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas’? In Castro, A., Fernandez, A. & Vigneresse, J.L. (eds) Understanding granites: Integrating new and classical techniques. Geological Society, Special Publication 168, 55-76. London: The Geological Society.Google Scholar
Patiño Douce, A.E. 1997. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology 25, 743-6.Google Scholar
Petford, N. 2003. Rheology of granitic magmas during ascent and emplacement. Annual Review of Earth and Planetary Sciences 31, 399-427.Google Scholar
Petford, N. & Atherton, M. 1996. Na-rich partial melts from newly underplated basaltic crust: The Cordillera Blanca Batholith, Peru. Journal of Petrology 37, 1491-521.Google Scholar
Petford, N. & Gallagher, K. 2001. Partial melting of mafic (amphib-olitic) lower crust by periodic influx of basaltic magma. Earth and Planetary Science Letters 5983, 1-17.Google Scholar
Petford, N., Kerr, R.C. & Lister, J.R. 1993. Dike Transport of Granitoid Magmas. Geology 21, 845-8.2.3.CO;2>CrossRefGoogle Scholar
Quick, J.E.S., Sinigoi, S. & Mayer, A. 1994. Emplacement dynamics of a large mafic intrusion in the lower crust, Ivrea-Verbano zone, Northern Italy. Journal of Geophysical Research 99, 21559-73.Google Scholar
Raia, F. & Spera, F.J. 1997. Simulation for the growth and differentiation of continental crust. Journal of Geophysical Research 102, 22629-18.Google Scholar
Reid, J., John, B., Evans, O. C. & Fates, D.G. 1983. Magma mixing in granitic rocks of the central Sierra Nevada, California. Earth and Planetary Science Letters 66, 243-61.CrossRefGoogle Scholar
Roberts, M.P. & Clemens, J.D. 1993. Origin of High-Potassium, Calc-Alkaline, I-Type Granitoids. Geology 21, 825-8.Google Scholar
Ruppert, S., Fliedner, M.M. & Zandt, G. 1998. Thin crust and active upper mantle beneath the Southern Sierra Nevada in the western United States. Tectonophysics 286, 237-52.Google Scholar
Rushmer, T. 2001. Volume change during partial melting reactions: implications for melt extraction, melt geochemistry and crustal rheology. Tectonophysics 342, 389-405.CrossRefGoogle Scholar
Saint-Blanquat (de), M., Law, R.D., Bouchez, J.L. & Morgan, S.S. 2001. Internal structure and emplacement of the Papoose Flat pluton: An integrated structural, pétrographic, and magnetic susceptibility study. Geological Society of America Bulletin 113, 976-95.Google Scholar
Shaw, H.R. 1985. Links between magma-tectonic rate balances, plutonism, and volcanism. Journal of Geophysical Research 90, 11275-88.Google Scholar
Sisson, T.W., Grove, T.L. & Coleman, D.S. 1996. Hornblende gabbro sili complex at Onion Valley, California, and a mixing origin for the Sierra Nevada batholith. Contributions to Mineralogy and Petrology 126, 81-108.Google Scholar
Sisson, T.W., Ratajeski, K., Hankins, W.B. & Glazner, A.F. 2005. Voluminous granitic magmas from common basaltic sources. Contributions to Mineralogy and Petrology 148, 635-61.Google Scholar
Topuz, G.I., Altherr, R., Schwarz, W., Siebel, W., Satir, M. & Dokuz, A. 2005. Post-collisional plutonism with adakite-like signatures: the Eocene Saraycik granodiorite (Eastern Pontides, Turkey). Contributions to Mineralogy and Petrology 150, 441-55.Google Scholar
Turner, S. & Foden, J. 1996. Magma mingling in late-Delamerian A-type granites at Mannum, south Australia. Mineralogy and Petrology 56, 147-69.Google Scholar
Turner, S.P., Foden, J.D. & Morrison, R.S. 1992. Derivation of Some A-Type Magmas by Fractionation of Basaltic Magma - an Example from the Padthaway Ridge, South Australia. Lithos 28, 151-79.Google Scholar
Wenzel, F. & Brun, J.P. 1991. A Deep Reflection Seismic Line across the Northern Rhine Graben. Earth and Planetary Science Letters 104, 140-50.Google Scholar
Wernicke, B., Clayton, R., Ducea, M., Jones, C.H., Park, S., Ruppert, S., Saleeby, J., Snow, J.K., Squires, L., Fliedner, M., Jiracek, G., Keller, R., Klemperer, S., Luetgert, J., Malin, P., Miller, K., Mooney, W., Oliver, H. & Phinney, R. 1996. Origin of high mountains in the continents: The southern Sierra Nevada. Science 271, 190-3.Google Scholar
Whalen, J.B., Currie, K.L. & Chappell, B.W. 1987. A-Type Granites - Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology 95, 407-19.Google Scholar
White, S.M., Crisp, J.A. & Spera, F.J. 2006. Long-term volumetric eruption rates and magma budgets. Geochemistry, Geophysics, Geosystems 7, doi: 10.1029/2005GC001002.Google Scholar
Wood, B.J. 2004. Melting of Fertile Peridotite With Variable Amounts of H20. In Sparks, R.S.J. & Hawkesworth, C.J. (eds) The States of the Planet: Frontiers and Challenges in Geophysics, 69-80. Washington, DC: American Geophysical Union.Google Scholar
Yoshino, T. & Okudaira, T. 2004. Crustal growth by magmatic accretion constrained by metamorphic P-T paths and thermal models of the Kohistan arc, NW Himalayas. Journal of Petrology 45, 2287-2302.Google Scholar
Yoshino, T., Yamamoto, H., Okudaira, T. & Toriumi, M. 1998. Crustal thickening of the lower crust of the Kohistan arc (N. Pakistan) deduced from Al zoning in clinopyroxene and plagio-clase. Journal of Metamorphic Geology 16, 729-48.Google Scholar
Zandt, G., Gilbert, H., Owens, T.J., Ducea, M., Saleeby, J. & Jones, C.H. 2004. Active foundering of a continental arc root beneath the southern Sierra Nevada in California. Nature 431, 41-6.Google Scholar