Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-20T05:06:43.881Z Has data issue: false hasContentIssue false

Source region of a granite batholith: evidence from lower crustal xenoliths and inherited accessory minerals

Published online by Cambridge University Press:  03 November 2011

Calvin F. Miller
Affiliation:
Calvin F. Miller, Department of Geology, Vanderbilt University, Nashville, TN 37235, U.S.A.
John M. Hanchar
Affiliation:
John M. Hanchar, Department of Geology, Vanderbilt University, Nashville, TN37235, U.S.A.
Joseph L. Wooden
Affiliation:
Joseph L. Wooden, U.S. Geological Survey, Menlo Park, CA 94025, U.S.A.
Victoria C. Bennett
Affiliation:
Victoria C. Bennett, Research School of Earth Sciences, Australian National University, Carberra, ACT 2601, Australia.
T. Mark Harrison
Affiliation:
T. Mark Harrison, Department of Earth and Space Sciences, University of California, Los Angeles, CA 90024, U.S.A.
David A. Wark
Affiliation:
David A. Wark, Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, U.S.A.
David A. Foster
Affiliation:
David A. Foster, Department of Geological Sciences, State University of New York, Albany, NY 12222, U.S.A.

Abstract

Like many granites, the Late Cretaceous intrusives of the eastern Mojave Desert, California, have heretofore provided useful but poorly focused images of their source regions. New studies of lower crustal xenoliths and inherited accessory minerals are sharpening these images.

Xenoliths in Tertiary dykes in this region are the residues of an extensive partial melting event. Great diversity in their composition reflects initial heterogeneity (both igneous and sedimentary protoliths) and varying amounts of melt extraction (from <10% to >70%). Mineral assemblages and thermobarometry suggest that the melting event occurred at T ≥ 750°C at a depth of about 40 km. Present-day Sr, Nd, and Pb isotopic ratios indicate a Mojave Proterozoic heritage, but unrealistic model ages demonstrate the late Phanerozoic adjustment of parent/daughter ratios. A link between these xenoliths and the Late Cretaceous granites, though not fully documented, is probable; in any case, they provide invaluable clues concerning a crustal melting event, recording information about nature of source material (heterogeneous, supracrustal-rich), conditions of melting (moderately deep, moderately high T, accompanied by partial dehydration), and melt extraction (highly variable, locally extensive).

The Old Woman-Piute granites contain a large fraction of inherited zircon and monazite. A SHRIMP ion probe investigation shows that these zircons record a Proterozoic history similar to that which affected the Mojave region. Zonation patterns in zircons, and to a lesser extent monazites and xenotimes, document multiple phases of igneous, metamorphic, and sedimentary growth and degradation, commonly several in a single grain. Low Y in portions of the cores of inherited zircons and monazites and in monazites and outer portions of zircons from the xenoliths appear to indicate growth in equilibrium with abundant garnet.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J. L. & Bender, E. E. 1989. Nature and origin of Proterozoic A-type granitic magmatism in the southwestern United States of America. LITHOS 23, 1952.CrossRefGoogle Scholar
Barton, M. D. 1990. Cretaceous magmatism, metamorphism, and metallogeny in the east-central Great Basin. In Anderson, J. L. (ed.) The Nature and Origin of Cordilleran Magmatism. GEOL SOC AM MEM 174, 283302.Google Scholar
Bennett, V. C. & DePaolo, D. J. 1987. Proterozoic crustal history of the western United States as determined by neodymium isotopic mapping. GEOL SOC AM BULL 99, 674–85.2.0.CO;2>CrossRefGoogle Scholar
Brouand, M., Banzet, G. & Barbey, P. 1990. Zircon behaviour during crustal anatexis. Evidence from the Tibetan slab migmatites. J VOLCANOL GEOTHERM RES 44, 143–62.CrossRefGoogle Scholar
Carl, B. S., Miller, C. F. & Foster, D. A. 1991. Western Old Woman Mountains shear zone: evidence for latest Cretaceous ductile extension in the Cordilleran orogenic belt. GEOLOGY 19, 893–6.2.3.CO;2>CrossRefGoogle Scholar
Carroll, M. R. & Wyllie, P. J. 1990. The system tonalite-H2O at 15 kbar and the genesis of calc-alkaline magmas. AM MINERAL 75, 345–57.Google Scholar
Clemens, J. D. & Vielzeuf, D. 1987. Constraints on melting and magma production in the crust. EARTH PLANET SCI LETT 86, 287306.CrossRefGoogle Scholar
Conrad, W. K., Nicholls, I. A. & Wall, V. J. 1988. Water-saturated and undersaturated melting of metaluminous and peraluminous crustal compositions at 10 kb; evidence for the origin of silicic magmas in the Taupo volcanic zone, New Zealand, and other occurrences. J PETROL 29, 765803.CrossRefGoogle Scholar
Copeland, P., Parrish, R. R. & Harrison, T. M. 1988. Identification of inherited Pb in monazite and its implications for U-Pb systematics. NATURE 333, 760–3.CrossRefGoogle Scholar
Davis, G. A. & Lister, G. S. 1988. Detachment faulting in continental extension, perspectives from the southwestern U.S. Cordillera. GEOL SOC AM SPEC PAP 218, 133–59.Google Scholar
Ellis, D. J. & Green, D. H. 1979. An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria. CONTRIB MINERAL PETROL 71, 1322.CrossRefGoogle Scholar
Ferry, J. M. & Spear, F. S. 1978. Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. CONTRIB MINERAL PETROL 66, 113–17.CrossRefGoogle Scholar
Fletcher, J. M. & Karlstrom, K. E. 1990. Late Cretaceous ductile deformation, metamorphism, and plutonism in the Piute Mountains, eastern Mojave Desert. J GEOPHYS RES 95, 487500.CrossRefGoogle Scholar
Foster, D. A. & Hyndman, D. W. 1990. Large-scale anatexis: the importance of subcrustal magma intrusion. EOS 71, 299300.Google Scholar
Foster, D. A., Harrison, T. M. & Miller, C. F. 1989. Age, inheritance, and uplift of the Old Woman-Piute Batholith, California, and implications for K-feldspar age spectra. J GEOL 97, 232–43.CrossRefGoogle Scholar
Foster, D. A., Miller, C. F. & Harrison, T. M. 1992. The timing and character of crustal thickening, metamorphism, plutonism, and unroofing in the Old Woman Mountains area, California: evidence from 40Ar/39Ar thermochronology and thermobarometry. GEOL SOC AM BULL 104, 176–91.2.3.CO;2>CrossRefGoogle Scholar
Gerber, M. E., Miller, C. F.Wooden, J. L. & Foster, D. A. 1991. Plutonism at the eastern edge of the Cordilleran Jurassic magmatic belt, Mojave Desert, California. GEOL SOC AM ABSTR PROG 23, A249.Google Scholar
Gleason, J. D., Miller, C. F. & Wooden, J. L. 1988. Barrel Spring alkalic complex: 1·4 Ga anorogenic plutonism in the Old Woman-Piute Range, eastern Mojave Desert, California. GEOL SOC AM ABSTR PROG 20, 164.Google Scholar
Graham, C. M. & Powell, R. 1984. A garnet-hornblende geothermometer: calibration, testing, and application to the Pelona Schist, southern California. J METAMORPHIC GEOL 2, 1331.CrossRefGoogle Scholar
Green, T. H. & Pearson, N. J. 1987. An experimental study of the Nb and Ta partitioning between Ti-rich minerals and silicate liquids at high pressure and temperature. GEOCHIM COSMOCHIM ACTA 51, 5562.CrossRefGoogle Scholar
Hammond, J. G. 1986. Geochemistry and petrogenesis of Proterozoic diabase in the southern Death Valley region of California. CONTRIB MINERAL PETROL 93, 321–21.CrossRefGoogle Scholar
Hanchar, J. M. 1990. Lower crustal xenoliths in a mid-Tertiary dike, Piute Mountains, southeastern California. Unpublished Master's Thesis, Vanderbilt University, Nashville, Tennessee U.S.A.Google Scholar
Harrison, T. M. & Watson, E. B. 1983. Kinetics of zircon dissolution and Zr diffusion in granitic melts of variable water content. CONTRIB MINERAL PETROL 84, 6672.CrossRefGoogle Scholar
Hileman, G. E., Miller, C. F. & Knoll, M. A. 1990. Mid-Tertiary structural evolution of the Old Woman Mountains area: implications for crustal extension across southeastern California. J GEOPHYS RES 95, 581614.CrossRefGoogle Scholar
Hogan, J. P. & Sinha, A. K. 1991. The effect of accessory minerals on the redistribution of lead isotopes during crustal anatexis: a model. GEOCHIM COSMOCHIM ACTA 55, 335–48.CrossRefGoogle Scholar
Hoisch, T. D. & Hamilton, W. B. 1990. Granite generation by fluid-induced anatexis. EOS 71, 694.Google Scholar
Kingsbury, J. A. 1990. Utility of monazite in geochronology: examples from the Old Woman-Piute Mountains, southeastern California. Unpublished Master's Thesis, Vanderbilt University, Nashville, Tennessee U.S.A.Google Scholar
Kingsbury, J. A., Miller, C. F., Wooden, J. L. & Harrison, T. M. 1990. Utility of monazite in geochronology: examples from the old Woman-Piute Mountains, southeastern California. EOS 71, 654.Google Scholar
Kohn, M. J. & Spear, F. S. 1990. Two new geobarometers for garnet amphibolites, with applications to southeastern Vermont. AM MINERAL 75, 8996.Google Scholar
McCaffrey, K. J. W., Howard, K. A. & Bailey, C. M. 1991. Jurassic syntectonic pluton emplacement in the Clipper Mountains, eastern Mojave Desert, California. GEOL SOC AM ABSTR PROG 23, A250.Google Scholar
Miller, C. F. & Hanchar, J. M. 1991. Zircon zonation patterns and interpretation of crustal histories. GEOL SOC AM ABSTR PROG 23, A46.Google Scholar
Miller, J. S. & Miller, C. F. 1991. Tertiary extension-related volcanism, Old Woman Mountains area, eastern Mojave Desert, California. J GEOPHYS RES 96, 13629–44.CrossRefGoogle Scholar
Miller, C. F., Rapp, R. P. & Watson, E. B. 1986. AFM mineral-felsic liquid phase relations; potential for elucidation of the origin and evolution of felsic magmas. GEOL SOC AM ABSTR PROG 18, 695.Google Scholar
Miller, C. F., Watson, E. B. & Harrison, T. M. 1988. Perspectives on the source, segregation, and transport of granitoid magmas. TRANS R SOC EDINBURGH EARTH SCI 79, 135–56.Google Scholar
Miller, C. F., Wooden, J. L., Bennett, V. C., Wright, J. E., Solomon, G. C. & Hurst, R. W. 1990. Petrogenesis of the composite peraluminous-metaluminous Old Woman-Piute Range Batholith, southeastern California: isotopic constraints. In Anderson, J. L. (ed.) The Nature and Origin of Cordilleran Magmatism. GEOL SOC AM MEM 174, 99109.Google Scholar
Mittlefeheldt, D. W. & Miller, C. F. 1983. Geochemistry of Sweetwater Wash pluton, California: implications for ‘anomalous’ trace element behavior during differentiation of felsic magmas. GEOCHIM COSMOCHIM ACTA 47, 109–24.CrossRefGoogle Scholar
Newton, R. C. & Haselton, H. T. 1981. Thermodynamics of the garnet-plagioclase-Al2SiO5-quartz geobarometer. In Newton, R. C., Navrotsky, A. & Wood, B. J. (eds) Thermodynamics of minerals and melts, 129–45. New York: Springer.CrossRefGoogle Scholar
Newton, R. C. & Perkins, D. III, 1981. Thermodynamic calibration of geobarometers based on the assemblages garnet-plagioclase-orthopyroxene (clinopyroxene)-quartz. AM MINERAL 67, 203–22.Google Scholar
Douce, A. E.Patiño, Humphreys, E. D. & Johnston, A. D. 1990. Anatexis and metamorphism in the tectonically thickened continental crust exemplified by the Sevier hinterland, western North America. EARTH PLANET SCI LETT 97, 290315.CrossRefGoogle Scholar
Douce, A. E.Patiño & Johnston, A. D. 1991. Phase equilibria and melt productivity in the pelitic system: implications for the origins of peraluminous granitoids and aluminous granulites. CONTRIB MINERAL PETROL 107, 202–18.CrossRefGoogle Scholar
Patterson, B. A.Stephens, W. E. & Herd, D. A. 1989. Zoning in granitoid accessory minerals as revealed by backscattered electron imagery. MINERAL MAG 53, 5562.CrossRefGoogle Scholar
Qin, Z. 1991. Disequilibrium partial melting model and fractionation of highly incompatible trace elements during partial melting. GEOL SOC AM ABSTR PROG 23, A45.Google Scholar
Rapp, R. P. 1990. Vapor absent partial melting of amphiboliteleclogite at 8–32 kbar, implications for the origin and growth of continental crust. Ph.D. Dissertation, Rensselaer Polytechnic Institute, Troy, NY, U.S.A.Google Scholar
Rapp, R. P., Ryerson, F. J. & Miller, C. F. 1987. Experimental evidence bearing on the stability of monazite during crustal anatexis. GEOPHYS RES LETT 14, 307–10.CrossRefGoogle Scholar
Silver, L. T., Anderson, C. A., Crittenden, M. & Robertson, J. M. 1977. Chronostratigraphic elements of the Precambrian rocks of the southwestern and far western United States. GEOL SOC AM ABSTR PROG 9, 1176.Google Scholar
Staude, J. M. G. & Miller, C. F. 1987. Lower crustal xenoliths from a Tertiary composite dike, Piute Mountains, S. E. California. GEOL SOC AM ABSTR PROG 19, 454.Google Scholar
Stone, P., Howard, K. A. & Hamilton, W. 1983. Correlation of metamorphosed Paleozoic strata of the southeastern Mojave Desert, California and Arizona. GEOL SOC AM BULL 99, 1135–47.2.0.CO;2>CrossRefGoogle Scholar
Vavra, G., 1990. On the kinematics of zircon growth and its petrogenetic significance: a cathodoluminescence study. CONTRIB MINERAL PETROL 106, 90–9.CrossRefGoogle Scholar
Vielzeuf, D. & Holloway, J. R. 1988. Experimental determination of fluid-absent melting relations in the pelitic system. Consequences for crustal differentiation. CONTRIB MINERAL PETROL 98, 257–76.CrossRefGoogle Scholar
Watson, E. B. & Harrison, T. M. 1983. Zircon saturation revisited: temperature and compositional effects in a variety of crustal magma types. EARTH PLANET SCI LETT 64, 295304.CrossRefGoogle Scholar
Wooden, J. L. & Miller, D. M. 1990. Chronologic and isotopic framework for Early Proterozoic crustal evolution in the eastern Mojave Desert region, southeastern California. J GEOPHYS RES 95, 20133–46.CrossRefGoogle Scholar
Wooden, J. L., Bennett, V. C., Hanchar, J. M. & Miller, C. F. 1990. Lower crustal xenoliths in Tertiary dykes, Old Woman Mountains area, California: II. Pb, Nd and Sr isotopic data. GEOL SOC AM ABSTR PROG 22, 95.Google Scholar
Wooden, J. L., Stacey, J. S. & Howard, K. A. 1988. Pb isotopic evidence for the formation of Proterozoic crust in the southwestern United States. In Ernst, W. G. (ed.) Metamorphism and crustal evolution of the western United States, 6986. Englewood Cliffs N.J.: Prentice-Hall.Google Scholar
Wright, J. E. & Wooden, J. L. 1991. New Sr, Nd, and Pb isotopic data from plutons in the northern Great Basin: implications for crustal structure and granite petrogenesis in the hinterland of the Sevier thrust belt. GEOLOGY 19, 457–60.2.3.CO;2>CrossRefGoogle Scholar