Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-27T08:26:01.560Z Has data issue: false hasContentIssue false

Genesis of the lower crustal garnet-orthopyroxene tonalites (S-type) of the Hidaka Metamorphic Belt, northern Japan

Published online by Cambridge University Press:  03 November 2011

T. Shimura
Affiliation:
T. Shimura, Department of Geology and Mineralogy, Faculty of Science,Hokkaido University, Sapporo, 060, Japan
M. Komatsu
Affiliation:
M. Komatsu, Department of Earth Science, Faculty of Science,Ehime University, Matsuyama, 790, Japan
J. T. Iiyama
Affiliation:
J. T. Iiyama, Department of Earth Science, Faculty of Science,Chiba University, Chiba, 260, Japan

Abstract

The Hidaka Metamorphic Belt (HMB) in Hokkaido, northern Japan, consists of tilted metamorphic layers of an island-arc type crust from lower (granulite facies) to upper (very low-grade metasedimentary) horizons. Abundant granitic rocks, mainly S-type tonalites of crustal origin, intrude various metamorphic layers and are classified into four depth types, namely upper, middle, lower and basal. The basal orthopyroxene-garnet (S-type) tonalities were intruded into granulite facies country rocks. Textural and compositional evidence from minerals in the basal tonalite indicates that the crystallisation sequence is Grt-Pl-Opx-Bt-Qtz-Crd-Kfs, and that crystallisation took place at about 600 MPa and 900°C-700°C.

Some crystallisation experiments were carried out in an internally heated pressure vessel, using the basal tonalite, under the conditions of 300 and 600 MPa, 700-900°C, and with 0-20 wt% H2O, respectively. The results show that the primary S-type tonalite magma was at a temperature above 900°C and contained 3-4 wt% H2O at the beginning of crystallisation. In order to study the influence of normative orthoclase content on orthopyroxene crystallisation, some starting materials also included 15, 20 and 25% normative orthoclase, by adding KAlSi3O8 gel to the rock powder. Normative orthoclase content has an influence on the subliquidus crystallisation limit of orthopyroxene.

The changes in P-T conditions and chemical composition of the magma during ascent would generate the sequence from the basal to upper S-type granite. Opx-free S-type granitic magma can be generated from lower crustal Grt-Opx S-type granitic magma, by differentiation with falling magmatic temperature.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arita, K., Toyoshima, T., Owada, M., Miyashita, S. & Jolivet, L. 1986. Tectonic movements of the Hidaka metamorphic belt, Hokkaido, Japan. MONOGR ASSOC GEOL COLLAB JAPAN 31, 247–63.Google Scholar
Bamba, M. 1985. Metamorphism of the Main Zone of the Hidaka metamorphic belt. Unpublished Masters Thesis, Niigata University.Google Scholar
Barley, M. E. 1987. Origin and evolution of mid-Cretaceous, garnet-bearing, intermediate and silicic volcanics from Cantebury, New Zealand. J VOLCANOL GEOTHERM RES 32, 247–67.CrossRefGoogle Scholar
Birch, W. D. & Gleadow, J. W. 1974. The genesis of garnet and cordierite in acid volcanic rocks: evidence from the Cerberean cauldron, central Victoria, Australia. CONTRIB MINERAL PETROL 45, 113.Google Scholar
Birch, W. D., Clemens, J. D. & Phillips, G. N. 1977. Devonian acid igneous complexes in Central Victoria, Guide to Excursion “C”, Second Australian Geological Convention. Melbourne: National Museum of Victoria.Google Scholar
Bohlen, S. R., Boettcher, A.L., Wall, V. J. & Clemens, J. D. 1983. Stability of phlogopite-quartz and sanidine-quartz: a model for melting in the lower crust. CONTRIB MINERAL PETROL 83, 270–7.CrossRefGoogle Scholar
Carlson, W. D. & Lindsley, D. H. 1988. Thermochemistry of pyroxenes on the join Mg2Si2O6-CaMgSi2O6. AM MINERAL 73, 242–52.Google Scholar
Chappell, B. W. & White, A. J. R. 1974. Two contrasting granite types. PAC GEOL 8, 173–4.Google Scholar
Chappell, B. W. & White, A. J. R. 1992. I- and S-type granites in the Lachlan Fold Belt. TRANS R SOC EDINBURGH EARTH SCI 83, 126.Google Scholar
Chappell, B. W., White, A. J. R. & Williams, I.S. 1991. A transverse section through granites of the Lachlan Fold Belt, Second Hutton Symposium Field Guide. REC BMR GEOL GEOPHYS 1991/22.Google Scholar
Clarke, D. B. 1981. The mineralogy of peraluminous granites: a review. CAN MINERAL 19, 317.Google Scholar
Clemens, J. D. & Wall, V. J. 1981. Origin and crystallization of some peraluminous (S-type) grantitic magmas. CAN MINERAL 19, 111–31.Google Scholar
Clemens, J. D. & Wall, V. J. 1984. Origin and evolution of a peraluminous silicic ignimbrite suite: the Violet Town Volcanics. CONTRIB MINERAL PETROL 88, 354–71.Google Scholar
Clemens, J. D. & Wall, V. J. 1988. Controls on the mineralogy of S-type volcanic and plutonic rocks. LITHOS 21, 5666.Google Scholar
Ellis, D. J. 1986. Garnet-liquid Fe2+-Mg equilibria and implications for the beginning of melting in the crust and subduction zones. AM J SCI 286, 765–91.Google Scholar
Grant, J. A. 1973. Phase equilibria in high grade metamorphism and partial melting of pelitic rocks. AM J SCI 273, 289317.Google Scholar
Grant, J. A. 1985.Phase equilibria in partial melting of pelitic rocks.InAshworth, J. R. (ed.) Migmatiles, 86144. Glasgow: Blackie.Google Scholar
Grant, J. A. 1986. Quartz-phlogopite-liquid equilibria and origins of charnockites. AM MINERAL 71, 1071–5.Google Scholar
Green, T. H. 1976. Experimental generation of cordierite- or garnet-bearing grantitic liquids from a pelitic composition. GEOLOGY 4, 85–8.2.0.CO;2>CrossRefGoogle Scholar
Harley, S. L. & Green, D. H. 1982. Garnet-Orthopyroxene barometry for granulites and peridotites. NATURE 300, 697701.Google Scholar
Hensen, B. J. & Green, D. H. 1973. Experimental study of the stability of cordierite and garnet in pelitic compositions at high pressures and temperatures. III. Synthesis of experimental data and geological applications. CONTRIB MINERAL PETROL 38, 151–66.Google Scholar
Hine, R., Williams, I. S., Chappell, B. W. & White, A. J. R. 1978. Contrasts between I- and S-type granitoids of the Kosciusko Batholith. J GEOL SOC AUST 25, 219–34.Google Scholar
Hoffer, E. & Grant, J. A. 1980. Experimental investigation of the formation of cordierite-orthopyroxene parageneses in pelitic rocks. CONTRIB MINERAL PETROL 73, 1522.CrossRefGoogle Scholar
Holdaway, M. J. & Lee, S. M. 1977. Fe-Mg cordierite stability in high-grade pelitic rocks based on experimental, theoretical, and natural observations. CONTRIB MINERAL PETROL 63, 175–98.CrossRefGoogle Scholar
Ikeda, Y. 1984a. Petrological significance of granitic inclusions from Pliocene-early Pleistocene pyroclastic flow deposits in central Hokkaido, Japan, J JAPAN ASSOC MIN PETROL ECON GEOL 79, 6080.Google Scholar
Ikeda, Y. 1984b. Trace element abundances in some granites from the Hidaka Belt, Hokkaido. MAGMA 70, 914.Google Scholar
Ikeda, Y. 1991. Geochemistry and magmatic evolution of Pliocene-early Pleistocene pyroclastic flow deposits in central Hokkaido, Japan. J GEOL SOC JAPAN 97, 645–66.CrossRefGoogle Scholar
Indares, A. & Martignole, J. 1985. Biotite-garnet geothermometry in the granulite facies: the influence of Ti and Al in biotite. AM MINERAL 70, 272–8.Google Scholar
Kawasaki, M. 1980a. Omine acid rocks, Kii Peninsula—geology and major element chemistry. J JAPAN ASSOC MIN PETROL ECON GEOL 75, 86102.Google Scholar
Kawasaki, M. 1980b. Omine acid rocks, Kii Peninsula—mineralogy. J JAPAN ASSOC MIN PETROL ECON GEOL 75, 146–59.CrossRefGoogle Scholar
Komatsu, M. 1983. Hypersthene-garnet migmatite in the Pankenushi area, Hidaka Metamorphic Belt. In Komatsu, M. (ed.) Petrological studies of deep crust and upper mantle rocks in island-arc, Report of research project, grant in aid for scientific research, 1982, 26–9. Niigata: Niigata University.Google Scholar
Komatsu, M., Miyashita, S., Maeda, J., Osanai, Y. & Toyoshima, T. 1983. Disclosing of a deepest section of continental-type crust up-thrust as the final event of collision of arcs in Hokkaido, north Japan. In Hashimoto, M. & Uyeda, S. (eds) Accretion tectonics in the Circum-Pacific regions, 149–65. Tokyo: Terrapub.Google Scholar
Komatsu, J., Miyashita, S. & Arita, K. 1986. Composition and structure of the Hidaka metamophic belt, Hokkaido—historical review and present status. MONOGR ASSOC GEOL COLLAB JAPAN 31, 189203.Google Scholar
Komatsu, M., Osanai, Y., Toyoshima, T. & Miyashita, S. 1989. Evolution of the Hidaka metamorphic belt, northern Japan. GEOL SOC SPEC PUBL 43, 487–93.Google Scholar
Kretz, R. 1982. Transfer and exchange equilibria in the portion of the pyroxene quadrilateral as deduced from natural and experimental data. GEOCHIM COSMOCHIM ACTA 46, 411–21.CrossRefGoogle Scholar
Kretz, R. 1983. Symbols for rock-forming minerals. AM MINERAL 68, 277–9.Google Scholar
Breton, N.Le & Thompson, A. B. 1988. Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis. CONTRIB MINERAL PETROL 99, 226–37.Google Scholar
Lee, H. Y. & Ganguly, J. 1988. Equilibrium compositions of coexisting garnet and orthopyroxene: experimental determinations in the system FeO-MgO-Al2O3-SiO2, and applications. J PETROL 29, 93113.Google Scholar
Lindsley, D. H. 1983. Pyroxene thermometry. AM MINERAL 68, 477–93.Google Scholar
Lonker, S. W. 1980. Conditions of metamorphism in high-grade pelitic gneisses from the Frontenac Axis, Ontario, Canada. CAN J EARTH SCI 17, 1666–84.Google Scholar
Maeda, J., Shimura, S., Arita, K., Osanai, Y., Murata, M., Bamba, M. & Suetake, S. 1991. Chemical features of orthopyroxene in peraluminous igneous rocks. AM MINERAL 76, 1676–84.Google Scholar
Miyashita, S. 1983. Reconstruction of the ophiolite succession in the western zone of the Hidaka Metamorphic Belt, Hokkaido. J GEOL SOC JAPAN 89, 6986.CrossRefGoogle Scholar
Murata, M. 1982. S-type and I-type granitic rocks of the Ohmine district, central Kii peninsula. J JAPAN ASSOC MIN PETROL ECON GEOL 77, 267–77.Google Scholar
Nakada, S. 1983. Zoned magma chamber of the Osuzuyama acid rocks, southwest Japan. J PETROL 24, 471–94.Google Scholar
Nekvasil, H. 1988. Calculated effect of anorthite component on the crystallization paths of H2O-undersaturated haplogranitic melts. AM MINERAL 73, 966–81.Google Scholar
Newton, R. C. & Perkins, D. 1982. Thermodynamic calibration of geobarometers based on the assemblages garnet-plagioclase-orthopyroxene (clinopyroxene)-quartz. AM MINERAL 67, 203–22.Google Scholar
Nickel, K. G. & Brey, G. 1984. Subsolidux orthopyroxene—clinopyroxene systematics in the system CaO-MgO-SiO2 to 60 kb: a re-evaluation of the regular solution model. CONTRIB MINERAL PETROL 87, 3542.Google Scholar
Okamoto, Y. 1983, Geochemical study of the granitic rocks in the Outer Zone, Southwest Japan and the Hidaka Belt, Hokkaido. Unpublished Masters Thesis, Okayama University.Google Scholar
Okamoto, Y. & Honma, H. 1983. Oxygen and strontium isotope study of granitic and metamorphic rocks from the Hidaka belt, Hokkaido. MAGMA 67, 151–5.Google Scholar
Osanai, Y. 1985. Geology and metamorphic zoning of the Main Zone of the Hidaka Metamorphic Belt in the Shizunai River region, Hokkaido J GEOL SOC JAPAN 91, 259–78.Google Scholar
Osanai, Y., Arita, K. & Bamba, M. 1986. P-T conditions of granulite-facies rocks from the Hidaka metamorphic belt, Hokkaido, Japan. J GEOL SOC JAPAN 92, 793808.Google Scholar
Osanai, Y., Komatsu, M. & Owada, M. 1991. Metamorphism and granite genesis in the Hidaka Metamorphic Belt, Hokkaido, Japan. J METAMORPHIC GEOL 9, 111–24.CrossRefGoogle Scholar
Owada, M. 1989. Geology and chemical composition of granitic rocks in the southern part of the Hidaka metamorphic belt, with special reference to cordierite-bearing granitic rocks. J GEOL SOC JAPAN 95, 227–40.Google Scholar
Owada, M. & Osanai, Y.1988. Rb-Sr whole rock ages of homogeneous and heterogeneous granitic rocks from the Hidaka Metamorphic Belt, Hokkaido In Komatsu, M. (ed.) Tectonic belts in Hokkaido 3, 3844. Matsuyama: Ehime University.Google Scholar
Owada, M. & Osanai, Y. 1989. Genesis of granite in the Hidaka Metamorphic Belt. EARTH MON 11, 252–7.Google Scholar
Douce, A. E.Patiño & Johnston, A. D. 1991. Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites. CONTRIB MINERAL PETROL 107, 202–18.Google Scholar
Perchuk, L. L., Aranovich, L. Ya, Podlesskii, K. K.Lavrant'eva, I. V., Gerasimov, V. Yu, Fed'kin, V. V., Kitsul, V. I., Karasakov, L. P. & Berdnikov, N. V. 1985. Precambrian granulties of the Aldan shield, eastern Siberia, USSR. J METAMORPH GEOL 3, 265310.CrossRefGoogle Scholar
Perkins, D. & Chipera, S. J. 1985. Garnet-orthopyroxene-plagioclase-quartz barometry: refinement and application to the English River subprovince and the Minnesota River valley. CONTRIB MINERAL PETROL 89, 6980.Google Scholar
Peterson, J. W. & Newton, R. 1989. Reversed experiments on biotite-quartz-feldspar melting in the system KMASH: implications for crustal anatexis. J GEOL 97, 465–85.Google Scholar
Peterson, J. W. & Newton, R. 1990. Experimental biotite-quartz melting in the KMASH-CO2 system and the role of CO2 in the petrogenesis of granites and related rocks. AM MINERAL 75, 1029–42.Google Scholar
Sengupta, P., Dasgupta, P., Bhattacharya, K. & Mukherjee, M. 1990. An orthopyroxene-biotite geothermometer and its application in crustal granulites and mantle-derived rocks. J METAMORPH GEOL 8, 191–7.Google Scholar
Shibata, K. & Ishihara, S. 1979a. Rb-Sr whole-rock and K-Ar mineral ages of granitic rocks in Japan. GEOCHEM 13, 113–9.Google Scholar
Shibata, K. & Ishihara, S. 1979b. Initial87Sr86Sr ratios of plutonic rocks from Japan. CONTRIB MINERAL PETROL 70, 381–90.Google Scholar
Shimura, T. 1991. Genesis and crystallization of the lower crustal S-type granitic magma. Unpublished Doctoral Thesis, Hokkaido University.Google Scholar
Shimura, T. 1992. Intrusion of granitic magma and uplift tectonics of the Hidaka Metamorphic Belt, Hokkaido. J GEOL SOC JAPAN 98, 120.Google Scholar
Takahashi, Y. 1986. Petrological study of granitic rocks in the upper reaches of Satsunai river, Main Zone of the Hidaka Metamorphic Belt. Unpublished Masters Thesis, Niigata University.Google Scholar
Thompson, A. B. 1976. Mineral reactions in pelitic rocks: II. Calculation of some P-T-X(Fe-Mg) phase reactions AM J SCI 276, 425–54.Google Scholar
Toyoshima, T. 1990. Pseudotachylite from the Main Zone of the Hidaka metamorphic belt, Hokkaido, northern Japan. J METAMORPH GEOL 8, 507–23.Google Scholar
Vielzeuf, D. & Holloway, R. 1988. Experimental determination of the fluid-absent melting relations in the pelitic system. Consequences for crustal differentiation. CONTRIB MINERAL PETROL 98, 257–76.Google Scholar
Wells, P. R. A. 1977. Pyroxene thermometry in simple and complex systems. CONTRIB MINERAL PETROL 62, 129–39.CrossRefGoogle Scholar
Wells, P. R. A. 1979. Chemical and thermal evolution of archean sialic crust, southern west Greenland. J PETROL 20, 187226.Google Scholar
Wendlandt, R. F. 1981. Influence of CO2 on melting of model granulite facies assemblages: a model for the genesis of charnockite. AM MINERAL 66, 1164–74.Google Scholar
White, A. J. R. & Chappell, B. W. 1977. Ultrametamorphism and granitoid genesis. TECTONOPHYSICS 43, 722.CrossRefGoogle Scholar
White, A. J. R. & Chappell, B. W. 1988. Some supracrustal (S-type) granites of the Lachlan Fold Belt. TRANS R SOC EDINBURGH EARTH SCI 79, 169–81.Google Scholar
Winkler, H. G. F. 1979. Petrogenesis of metamorphic rocks, 5th edn. New York: Springer.Google Scholar
Wood, B. J. & Banno, S. 1973. Garnet-orthopyroxene and orthopyroxene-clinopyroxene relationships in simple and complex systems. CONTRIB MINERAL PETROL 42, 109–42.Google Scholar
Wood, C. p. 1974. Petrogenesis of garnet-bearing rhyolites from Canterbury, New Zealand. NEW ZEALAND J GEOL GEOPH 17, 759–88.Google Scholar
Wyborn, D., Chappell, B. W. & Johnston, R. M. 1981. Three S-type volcanic suites from the Lachlan Fold Belt, southeast Australia. J GEOPHYS RES 86, 10335–48.Google Scholar
Wyborn, D., White, A. J. R. & Chappell, B. W. 1991. Enclaves in the S-type Cowra Granodiorite, Second Hutton Symposium Field Guide. REC BMR GEOL GEOPHYS 1991/24.Google Scholar