Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T08:41:36.525Z Has data issue: false hasContentIssue false

C-type magmas: igneous charnockites and their extrusive equivalents

Published online by Cambridge University Press:  03 November 2011

Jonathan A. Kilpatrick
Affiliation:
J. A. Kilpatrick and D. J. Ellis, Department of Geology, The Australian National University, GPO Box 4, Canberra City ACT 2601, Australia

Abstract

Igneous charnockites are characterised by distinctively high abundances of K2O, TiO2, P2O5 and LIL elements and low CaO at a given SiO2 level compared to metamorphic charnockites, and I-, S- and A-type granites. They form a distinctive type of intrusive igneous rocks, the Charnockite Magma Type (CMT or C-type), which generally lack hornblende and consist of pyroxene, alkali feldspar, plagioclase, quartz, biotite, apatite, ilmenite and titanomagnetite. Although this mineral assemblage superficially resembles that of metamorphic charnockites, magmatic charnockites are characterised by inverted pigeonite, exceptionally calcic alkali feldspar, potassic plagioclase, and coexisting opaque oxides, all with crystallisation temperatures of 950-1050°C. Apatite is a ubiquitous phase which, together with the very high concentrations of Zr and TiO2 over a wide silica range, is consistent with the derivation of the Charnockite Magma Type by very high temperature partial melting and fractionation.

The credibility of intrusive charnockites as a magmatic type has historically foundered because of their apparent restriction to granulite belts and the absence of any reported extrusive equivalents. We report examples of volcanic rocks, of various ages, with the same distinctive major and trace element compositions, mineral assemblages and high temperatures of crystallisation as intrusive chamockites.

The Charnockite Magma Type is considered to be derived by melting of a hornblende-free or poor, LILE-enriched fertile granulite source which had not been geochemically depleted by a previous partial melting event but which was dehydrated in an earlier metamorphism. Whereas H2O-saturated melting produces migmatites or "failed" granites, and vapour-absent melting of an amphibolite can produce I-type granites, according to this model the vapour-absent melting of a hornblende-free or hornblende-poor granulite at even higher temperatures produces charnockites.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, P., Condie, K. C. & Narayana, B. L. 1985. The geochemistry of prograde and retrograde charnockite-gneiss reactions in sourthern India. GEOCHIM COSMOCHIM ACTA 49, 323–36.CrossRefGoogle Scholar
Barth, T. F. W. 1967. Theoretical petrology, 2nd edn New York: John Wiley and Sons.Google Scholar
Bateman, P. C. & Chappell, B. W. 1979. Crystallization, fractionation, and solidification of the Tuolumne Intrusive Series, Yosemite National Park, California. GEOL SOC AM BULL 90, 465–82.2.0.CO;2>CrossRefGoogle Scholar
Bellieni, G. M., Comin-Chiaramonti, P., Marques, L. S., Melfi, A. J., Nardy, A. J. R., Papatrechas, C., Piccirillo, E. M., Roisenberg, A. & Stolfa, D. 1986. Petrogenetic aspects of acid and basaltic lavas from the Parana Plateau (Brazil): geological, mineralogical and petrological relationships. J PETROL 27, 915–44.CrossRefGoogle Scholar
Bertrand, P., Ellis, D. J. & Green, D. H. 1991. The stability of sapphirine–quartz and hypersthene–sillimanite–quartz assemblages: an experimental investigation in the system FeO—MgO—A12O3—SiO2 under H2O and CO2 conditions. CONTRIB MINERAL PETROL 108, 5571.CrossRefGoogle Scholar
Bhattacharya, A.Sen, S. K. 1986. Granulite metamorphism, fluid buffering, and dehydration melting in the Madras charnockites and metapelites. J. PETROL 27, 1119–41.CrossRefGoogle Scholar
Blight, D. F. & Oliver, R. L. 1977. The metamorphic geology of the Windmill Islands, Antarctica: a preliminary account. J GEOL SOC AUST 24, 239–62.CrossRefGoogle Scholar
Bohlen, S. R. & Boettcher, A. L. 1981. Experimental investigations and geological applications of orthopyroxene geobarometry. AM MINERAL 66, 951–64.Google Scholar
Chappell, B. W., White, A. J. R. & Williams, I. S. 1991. Excursion guide: A transverse section through granites of the Lachlan Fold Belt. BUR MINER RES GEOL GEOPHYS AUST, RECORD 1991/22.Google Scholar
Clemens, J. D. 1991. The Granulite-granite connexion. In Vielzeuf, D. & Vidal, Ph. (eds) Granulites and crustal evolution, 2536. Netherlands: Kluwer Academic Publishers.Google Scholar
Cleverly, R. W., Betton, P. J. & Bristow, J. W. 1984. Geochemistry and petrogenesis of the Lebombo rhyolites. GEOL SOC SOUTH AFRICA, SPEC PUBL 13, 171–94.Google Scholar
Collins, W. J., Beams, S. D., White, A. J..R. & Chappell, B. W. 1982. Nature and origin of A-Type granites with particular reference to southeastern Australia. CONTRIB MINERAL PETROL 80, 189200.CrossRefGoogle Scholar
Condie, K. C. & Allen, P. 1984. Origin of Archaean charnockites from southern India. In Kroner, A. (ed.) Archaean geochemistry, 182203. Berlin: Springer.CrossRefGoogle Scholar
Condie, K. C., Allen, P. & Narayana, B. L. 1982. Geochemistry of the Archean low- to high-grade transition zone, southern India. CONTRIB MINERAL PETROL 81, 157–67.CrossRefGoogle Scholar
Condie, K. C., Bowling, G. P. & Allen, P. 1986. Origin of granites in an Archean high-grade terrane, southern India. CONTRIB MINERAL PETROL 92, 93103.CrossRefGoogle Scholar
Cooray, P. G. 1969. Charnockites as metamorphic rocks. AM J SCI 67, 969–82.CrossRefGoogle Scholar
Cox, K. G. 1972. The Karroo volcanic cycle. J GEOL SOC LONDON 128, 311–36.Google Scholar
Cox, K. G., Bell, J. D. & Pankhurst, R. J. 1979. The interpretation of igneous rocks. London: Allen and Unwin.CrossRefGoogle Scholar
Creaser, R. A. & White, A. J. R. 1991. Yardea Dacite—Large-volume, high-temperature felsic volcanism from the middle Proterozoic of South Australia. GEOLOGY 19, 4851.2.3.CO;2>CrossRefGoogle Scholar
de Waard, D. 1969. The occurrence of charnockite in the Adirondacks: a note on the origin and definition of charnockite. AM J SCI 267, 983–87.CrossRefGoogle Scholar
Duchesne, J. C., Caruba, R. & Iacconi, P. 1987. Zircon in charnockitic rocks from Rogaland (southwest Norway); petrogenetic implications. LITHOS 20, 357–68.CrossRefGoogle Scholar
Duncan, A. R., Erlank, A. J. & Marsh, J. S. 1984. Regional geochemistry of the Karoo Igneous Province. GEOL SOC SOUTH AFRICA, SPEC PUBL 13, 355–88.Google Scholar
Ellis, D. J. 1980. Osumilite-sapphirine-quartz granulites from Enderby Land, Antarctica: P-T conditions of metamorphism, implications for garnet-cordierite equilibria and the evolution of the deep crust. CONTRIB MINERAL PETROL 74, 201–10.CrossRefGoogle Scholar
Ellis, D. J. 1987. Origin and evolution of granulites in normal and thickened crusts. GEOLOGY 15, 167–70.2.0.CO;2>CrossRefGoogle Scholar
Ellis, D. J. & Thompson, A. B. 1986. Subsolidus and partial melting reactions in the quartz-excess CaO + MgO + A12O2 + SiO2 + H2O system under water-excess and water-deficient conditions to 10 kb: some implications for the origin of peraluminous melts from mafic rocks. J PETROL 27, 91121.Google Scholar
Ellis, D. J., Sheraton, J. W., England, R. N. & Dallwitz, W. B. 1980. Osumilite-sapphirine-quartz granulites from Enderby Land, Antarctica—mineral assemblages and reactions. CONTRIB MINERAL PETROL 72, 123–43.Google Scholar
England, P. C. & Richardson, S. W. 1977. The influence of erosion upon the mineral facies of rocks from different metamorphic environments. J GEOL SOC London 134, 201–13.Google Scholar
Erlank, A. J. (ed) 1984. Petrogenesis of the volcanic rocks of the Karoo Province. GEOL SOC SOUTH AFRICA, SPEC PUBL 13Google Scholar
Erlank, A. J., Marsh, J. S., Duncan, A. R., Miller, R. McG., Hawkesworth, C. J., Betton, P. J. & Rex, D. C. 1984. Geochemistry and petrogenesis of the Etendeka Volcanic rocks from SWA/Namibia. GEOL SOC SOUTH AFRICA, SPEC PUBL 13, 195245.Google Scholar
Ewart, A. 1982. The mineralogy and petrology of Tertiary–Recent orogenic volcanic rocks: with special reference to the andesitic-basaltic compositional range, In Thorpe, R. S. (ed.) Andesites, 2595. New York: John Wiley & Sons.Google Scholar
Fanning, C. M., Flint, R. B., Parker, A. J., Ludwig, K. R. & Blisset, A. H. 1988. Redefined Proterozoic tectonic evolution of the Gawler Craton, South Australia, through U-Pb zircon geochronology. PRECAMBRIAN RES 40/41, 363–86.CrossRefGoogle Scholar
Friend, C. R. L. 1981. Charnockite and granite formation and influx of CO2 at Kabbaldurga. NATURE 294, 550–52.Google Scholar
Fuhrman, M. L. & Lindsley, D. H. 1988. Ternary-feldspar modeling and thermometry. AM Mineral 73, 201–15.Google Scholar
Giles, C. W. 1988. Petrogenesis of the Proterozoic Gawler Range Volcanics, South Australia. PRECAMBRIAN RES 40/41, 407–27.CrossRefGoogle Scholar
Hansen, E. C., Newton, R. C. & Janardhan, A. S. 1984. Fluid inclusions in rocks from the amphibolite-facies gneiss to charnockite progression in southern Karnataka, India: direct evidence concerning the fluids of granulite metamorphism. J METAMORPHIC GEOL 2, 249–64.Google Scholar
Hansen, E. C., Janardhan, A. S., Newton, R. C., Prame, W. K. B. N. & Ravindra Kumar, G. R. 1987. Arrested charnockite formation in southern India and Sri Lanka. CONTRIB MINERAL PETROL 96, 255–44.Google Scholar
Harley, S. L. 1989. The origins of granulites: a metamorphic perspective. GEOL MAG 126, 215–47.CrossRefGoogle Scholar
Hawkesworth, C., Mantovani, M. & Peate, D. 1988. Lithospheric remobilisation during Parana CFB magmatism. J PETROL SPEC LITHOSPHERE ISSUE, 205–23.Google Scholar
Hergt, J. M. 1987. The origin and evolution of the Tasmanian dolerites. Unpublished Ph.D. thesis, The Australian National University, Canberra.Google Scholar
Holland, T. H. 1900. The charnockite series, a group of Archaean hypersthenic rocks in Peninsular India. GEOL SURV INDIA MEM 28, 119249.Google Scholar
Howie, R. A. 1954. The geochemistry of the charnockite series of Madras, India. TRANS R SOC EDINBURGH 62, 725–68.CrossRefGoogle Scholar
Hubbard, F. H. & Whitley, J. E. 1979. REE in charnockite and associated rocks, southwest Sweden. LITHOS 12, 111.Google Scholar
Janardhan, A. S., Newton, R. C. & Smith, J. V. 1979. Ancient crustal metamorphism at low pH2O: charnockite formation at Kabbaldurga, south India. NATURE 278, 511–14.CrossRefGoogle Scholar
Janardhan, A. S., Newton, R. C. & Hansen, E. C. 1982. The transformation of amphibolite facies gneiss to charnockite in southern Karnataka and northern Tamil Nadu, India. CONTRIB MINERAL PETROL 79, 130–49.CrossRefGoogle Scholar
Kilpatrick, J. A. & Ellis, D. J. 1991. The Charnockite Magma Suite: A new and geochemically distinct magma suite, its characterisation and petrogenetic implications. In Chappell, B. W. (ed.) Second Hutton Symposium on Granites and Related Rocks. Abstracts, 57. Canberra: BMR, GGA, R 1991/25.Google Scholar
Kilpatrick, J. A., Ellis, D. J. & Young, D. N. 1990. Field aspects of the Ardery Charnockitic Intrusions, Windmill Islands, Antarctica. A dynamic magma chamber. GEOL SOC AUST ABSTR 25, 290.Google Scholar
Kleeman, G. J.Twist, D. 1989. The Compositionally-zoned sheet-like granite pluton of the Bushveld Complex: evidence bearing on the nature of A-type magmatism. J. PETROL 30, 1383–414.CrossRefGoogle Scholar
Breton, N.Le & Thompson, A. B. 1988. Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis. CONTRIB MINERAL PETROL 99, 226–37.Google Scholar
Maitre, R. W.Le 1988. A classification of igneous rocks and glossary of terms. Oxford: Blackwell Scientific Publications.Google Scholar
Loiselle, M. C. & Wones, D. R. 1979. Characteristics and origin of anorgenic granites. GEOL SOC AM PROG ABSTR 11, 468.Google Scholar
MacDonald, R., McGarvie, D. W., Pinkerton, H., Smith, R. L. & Palacz, Z. A. 1990. Petrogenetic evolution of the Torfajokull Volcanic Complex, Iceland I. Relationship between the magma types J PETROL 31, 429–59.Google Scholar
Naney, M. T. 1983. Phase equilibria of rock-forming ferromagnesian silicates in granitic systems. AM J SCI 283, 9931033.Google Scholar
Naslund, H. R. 1989. Petrology of the Basistoppen Sill, East Greenland: A calculated magma differentiation trend. J PETROL 30, 299319.Google Scholar
Nekvasil, H. & Burnham, C. W. 1987. The individual effects of pressure and water content on phase equilibria in the “granite” system. GEOCHEM SOC, SPEC PUBL 1, 433–45.Google Scholar
Newton, R. C. & Hansen, E. C. 1983. The origin of Proterozic and late Archean charnockites-evidence from field relations and experimental petrology. GEOL SOC AM MEM 161, 167–78.Google Scholar
Peterson, J. W. & Newton, R. C. 1990. Experimental biotite-quartz melting in the KMASH-CO2 system and the role of CO2 in the petrogenesis of granites and related rocks. AM MINERAL 75, 1029–42.Google Scholar
Ravich, M. G. 1972. The charnockite problem. In Adie, R. J. (ed.) Antarctic geology and geophysics, 523–26. Oslo: Scandinavian University Books.Google Scholar
Ravich, M. G., Solov'ev, D. S. & Fedorov, L. V. 1985. Geological structure of MacRobertson Land (East Antarctica). Rotterdam: A. A. Balkema.Google Scholar
Sandiford, M. & Powell, R. 1986. Pyroxene exsolution in granulites from Fyfe Hills, Enderby Land, Antarctica: Evidence for 1000°C metamorphic temperatures in Archean continental crust. AM MINERAL 71, 946–54.Google Scholar
Sheraton, J. W. 1982. Origin of charnockitic rocks of MacRobertson Land. In Craddock, C. (ed.) Antarctic geoscience, 489-97. Madison: University of Wisconsin Press.Google Scholar
Sheraton, J. W., Black, L. P. & Tindle, A. G. 1992. Petrogenesis of plutonic rocks in a Proterozoic granulite-facies terrane—The Bunger Hills, East Antarctica. CHEM GEOL (in press).Google Scholar
Stewart, K. & Foden, J. 1990. The fundamental role of mantle derived magma in the production of a large volume felsic volcanic province, Gawler Ranges, South Australia. GEOL SOC AUST ABSTR 27, 96.Google Scholar
Sun, S.-s. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Saunders, A. D. & Norry, M. J. (eds) Magmatism in the ocean basins. GEOL SOC SPEC PUBL 42, 313–45.Google Scholar
Thompson, A. B. & England, P. C. 1984. Pressure-temperature-time paths of regional metamorphism II. Their inference and interpretation using mineral assemblages in metamorphic rocks. J PETROL 25, 929–55.CrossRefGoogle Scholar
Turner, F. J. & Verhoogen, J. 1960. Igneous and metamorphic petrology, 2nd edn. New York: McGraw-Hill.Google Scholar
Turner, S. P., Foden, J. D. & Morrison, R. S. 1991. Derivation of A-type magma by fractionation of basaltic magma with an example from the Padthaway Ridge, South Australia. In Chappell, B. W. (ed.) Second Hutton Symposium on Granites and Related Rocks. Abstracts., 107. Canbera: BMR, GGA, R 1991/25.Google Scholar
van Reenen, D. D. & Roering, C. (eds) 1990. The Limpopo Belt: A field workshop on granulites and deep crustal tectonics.: Department of Geology, Rand Afrikaans University, Johannesburg, South Africa.Google Scholar
Whalen, J. B., Currie, K. L. & Chappell, B. W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. CONTRIB MINERAL PETROL 95, 407–19.Google Scholar
White, A. J. R. & Chappell, B. W. 1977. Ultrametamorphism and granitoid genesis. TECTONOPHYSICS 43, 722.CrossRefGoogle Scholar
White, A. J. R. & Chappell, B. W. 1983. Granitoid types and their distribution in the Lachlan Fold Belt, southeastern Australia. GEOL SOC AM MEM 159, 2134.Google Scholar
Wilson, M. 1989. Igneous petrogenesis. A global tectonic approach. London: Unwin Hyman Ltd.Google Scholar
Wones, D. R. & Dodge, F. C. W. 1977. The stability of phlogopite in the presence of quartz and diopside. In Fraser, D. G. (ed.) Thermodynamics in geology. Amsterdam: D. Reidel Pub. Co.Google Scholar
Wyborn, D. & Chappell, B. W. 1986. The petrogenetic significance of chemically related plutonic and volcanic rock units. GEOL MAG 123, 619–28.CrossRefGoogle Scholar
Wyllie, P. J. 1977. Crustal anatexis: an experimental review. TECTONOPHYSICS 43, 4171.Google Scholar
Young, D. N. & Black, L. P. 1991. U-Pb zircon dating of Proterozoic igneous charnockites from the Mawson coast, East Antarctica. ANTARCT SCI 3, 205–16.Google Scholar
Young, D. N. & Ellis, D. J. 1990. Petrology of Proterozoic igneous charnockites from Mawson, Antarctica: high-temperature synorogenic granites produced by anatexis in a thickened crust. GEOL SOC AUST ABSTR 25, 261–62.Google Scholar
Young, D. N. & Ellis, D. J. 1991. The intrusive Mawson charnockites: evidence for a compressional plate margin setting of the Proterozoic mobile belt of East Antarctica. In Thomson, M. R. A., Crame, J. A. & Thomson, J. W. (eds) Geological evolution of Antarctica, 2531. Cambridge: Cambridge University Press.Google Scholar