Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-07-04T21:27:40.419Z Has data issue: false hasContentIssue false

A Caribbean epiphyte community preserved in Miocene Dominican amber

Published online by Cambridge University Press:  19 December 2017

Ulla Kaasalainen
Affiliation:
Department of Geobiology, University of Göttingen, Goldschmidtstraße 3, D-37077 Göttingen, Germany. Email: alexander.schmidt@geo.uni-goettingen.de
Jochen Heinrichs
Affiliation:
Department of Biology and Geobio-Center, University of Munich (LMU), Munich, Germany.
Matthew A. M. Renner
Affiliation:
Royal Botanical Garden and Domain Trust, Sydney, Australia.
Lars Hedenäs
Affiliation:
Department of Botany, Swedish Museum of Natural History, Stockholm, Sweden.
Alfons Schäfer-Verwimp
Affiliation:
Mittlere Letten 11, Herdwangen-Schönach, Germany.
Gaik Ee Lee
Affiliation:
Department of Biology and Geobio-Center, University of Munich (LMU), Munich, Germany.
Michael S. Ignatov
Affiliation:
Tsitsin Main Botanical Garden, Russian Academy of Sciences, Moscow, Russia. Faculty of Biology, Moscow University, Moscow, Russia.
Jouko Rikkinen
Affiliation:
Department of Biosciences, University of Helsinki, Helsinki, Finland. Finnish Museum of Natural History, Botany Unit, University of Helsinki, Finland.
Alexander R. Schmidt*
Affiliation:
Department of Geobiology, University of Göttingen, Goldschmidtstraße 3, D-37077 Göttingen, Germany. Email: alexander.schmidt@geo.uni-goettingen.de
*
*Corresponding author

Abstract

Fossil tree resins preserve a wide range of animals, plants, fungi and microorganisms in microscopic fidelity. Fossil organisms preserved in an individual piece of amber lived at the same time in Earth history and mostly even in the same habitat, but they were not necessarily parts of the same interacting community. Here, we report on an in situ preserved corticolous community from a piece of Miocene Dominican amber which is composed of a lichen, a moss and three species of leafy liverworts. The lichen is assigned to the extant genus Phyllopsora (Ramalinaceae, Lecanoromycetes) and is described as P.magna Kaasalainen, Rikkinen & A. R. Schmidt sp. nov. The moss, Aptychellites fossilis Schäf.-Verw., Hedenäs, Ignatov & Heinrichs gen. & sp. nov., closely resembles the extant genus Aptychella of the family Pylaisiadelphaceae. The three leafy liverworts comprise the extinct Lejeuneaceae species Cheilolejeunea antiqua (Grolle) Ye & Zhu, 2010 and Lejeunea miocenica Heinrichs, Schäf.-Verw., M. A. M. Renner & G. E. Lee sp. nov. and the extinct Radulaceae species Radula intecta M. A. M. Renner, Schäf.-Verw. & Heinrichs sp. nov. The presence of five associated extinct cryptogam species, four of which belong to extant genera, further substantiates the notion of a stasis in morphotype diversity, but a certain turnover of species, in the Caribbean since the early Miocene.

Type
Articles
Copyright
Copyright © The Royal Society of Edinburgh 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

5. References

Acebey, A., Gradstein, S. R. & Krömer, T. 2003. Species richness and habitat diversification of bryophytes in submontane rain forest and fallows of Bolivia. Journal of Tropical Ecology 19, 918.Google Scholar
Acharius, E. 1803. Methodus qua Omnes Detectos Lichenes Secundum Organa Carpomorpha ad Genera, Species et Varietates Redigere atque Observationibus Illustrare Tentavit Erik Acharius. Stockholmiae: F.D.D. Ulrich. 394 pp.Google Scholar
Agardh, C. 1821. Aphorismi botanici, p. 93. Lundae: Literis Berlingianis.Google Scholar
Akiyama, H., Schäfer-Verwimp, A., Printarakul, N., Suleiman, M., Tan, B. C., Goffinet, B., Yong, K. T. & Müller, F. 2015. Phylogenetic study of the genus Aptychella (Pylaisiadelphaceae, Musci). The Bryologist 118, 273–83.Google Scholar
Allen, B. H. 2010. Moss Flora of Central America, Part 3. Anomodontaceae-Symphyodontaceae. Monographs in Systematic Botany from the Missouri Botanical Garden 117, ix, 1731.Google Scholar
Bechteler, J., Lee, G. E., Schäfer-Verwimp, A., Pócs, T., Peralta, D. F., Renner, M. A. M., Schneider, H. & Heinrichs, J. 2016. Towards a monophyletic classification of Lejeuneaceae IV: reinstatement of Allorgella, transfer of Microlejeunea aphanella to Vitalianthus and refinements of the subtribal classification. Plant Systematics and Evolution 302, 187201.Google Scholar
Brako, L. 1991. Phyllopsora (Bacidiaceae). Flora Neotropica 55, 166.Google Scholar
Brotherus, V. F. 1908. Gammiella. In Engler, H. G. A. & Prantl, K. (eds) Die natürlichen Pflanzenfamilien 1(3). Leipzig: W. Engelmann. 1067 pp.Google Scholar
Browne, P. 1756. Civil and natural history of Jamaic. London: Osborn & Shipton. 503 pp.Google Scholar
Buck, W. R. 1998. Pleurocarpous mosses of the West Indies. Memoirs of the New York Botanical Garden 82, 1400.Google Scholar
Buck, W. R. & Vitt, D. H. 1986. Suggestions for a new familial classification of pleurocarpous mosses. Taxon 35, 2160.Google Scholar
Cardot, J. 1912. Pylaisiadelpha, genre noveau de la famille des Entodontacées. Revue Bryologique 39, 5758.Google Scholar
Caspary, R. 1887. Einige neue Pflanzenreste aus dem samländischen Bernstein. Schriften der Königlichen Physikalisch-Ökonomischen Gesellschaft zu Königsberg (Abhandlungen) 27, 18.Google Scholar
Cavalier-Smith, T. 1998. A revised six-kingdom system of life. Biological Reviews 73, 203–66.Google Scholar
Cavers, F. 1910. The interrelationships of the Bryophyta. New Phytologist 9, 269304.Google Scholar
Churchill, S. P. & Buck, W. R. 1982. A taxonomic revision of Leptotheca (Rhizogoniaceae). Brittonia 34, 111.Google Scholar
Cornejo, C. & Scheidegger, C. 2016. Cyanobacterial gardens: the liverwort Frullania asagrayana acts as a reservoir of lichen photobionts. Environmental Microbiology Reports 8, 352–57.Google Scholar
Cornelissen, J. H. C. & Ter Steege, H. 1989. Distribution and ecology of epiphytic bryophytes and lichens in dry evergreen forest of Guyana. Journal of Tropical Ecology 5, 131–50.Google Scholar
Crum, H. A. 1971. Nomenclatural changes in the Musci. The Bryologist 74, 165–74.Google Scholar
Devos, N., Renner, M. A. M., Gradstein, R., Shaw, A. J., Laenen, B. & Vanderpoorten, A. 2011a. Evolution of sexual systems, dispersal strategies and habitat selection in the liverwort genus Radula. New Phytologist 192, 225–36.Google Scholar
Devos, N., Renner, M. A. M., Gradstein, S. R., Shaw, A. J. & Vanderpoorten, A. 2011b. Molecular data challenge traditional subgeneric divisions in the leafy liverwort genus Radula. Taxon 60, 1623–32.Google Scholar
Dong, S., Schäfer-Verwimp, A., Pócs, T., Feldberg, K., Czumaj, A., Schmidt, A. R., Schneider, H. & Heinrichs, J. 2013. Size doesn't matter – recircumscription of Microlejeunea based on molecular and morphological evidence. Phytotaxa 85, 4155.Google Scholar
Dumortier, B. C. J. 1822. Commentationes botanicae. Tournay: Ch. Casterman-Dien. 118 pp.Google Scholar
Elix, J. A. 2006. Five new species of Phyllopsora (lichenized Ascomycota) from Australia. Australasian Lichenology 59, 2329.Google Scholar
Eriksson, O. E. & Winka, W. 1997. Supraordinal taxa of Ascomycota. Myconet 1, 116.Google Scholar
Feldberg, K., Schneider, H., Stadler, T., Schäfer-Verwimp, A., Schmidt, A. R. & Heinrichs, J. 2014. Epiphytic leafy liverworts diversified in angiosperm-dominated forests. Scientific Reports 4, 5974.Google Scholar
Fleischer, M. 1923. Die Musci der Flora von Buitenzorg 4, ixxxi, 1104–729. Leiden: E. J. Brill.Google Scholar
Frahm, J. -P. 1993. Mosses in Dominican amber. Journal of the Hattori Botanical Laboratory 74, 249–59.Google Scholar
Frahm, J. -P. & Newton, A. E. 2005. A new contribution to the moss Flora of Dominican amber. The Bryologist 108, 526–36.Google Scholar
Goffinet, B. & Buck, W. R. 2004. Systematics of the Bryophyta (mosses): from molecules to a revised classification. Monographs in Systematic Botany from the Missouri Botanical Garden 98, 205–39.Google Scholar
Gottsche, C. M., Lindenberg, J. B. W. &, Nees, C. G. 1845. Synopsis hepaticarum, fasc. 2, 145304. Hamburg: Meissner.Google Scholar
Gradstein, S. R. 2006. The lowland cloud forest of French Guiana – a liverwort hotspot. Cryptogamie Bryologie 27, 141–52.Google Scholar
Gradstein, S.R. & Pócs, T. 1989. Bryophytes. In Lieth, H. & Werger, M. J. A. (eds) Tropical Rain Forest Ecosystems, 311–25. Amsterdam: Elsevier Science Publishers.Google Scholar
Grimaldi, D. A. 1996. Amber: Window to the past. New York: Harry N. Abrahams Inc. & American Museum of Natural History. 216 pp.Google Scholar
Grolle, R. 1980. Lebermoose im Bernstein 2. Feddes Repertorium 91, 401–07.Google Scholar
Grolle, R. 1983. Leucolejeunea antiqua n. sp., das erste Lebermoos aus Dominikanischem Bernstein. Stuttgarter Beiträge zur Naturkunde, Serie B 96, 19.Google Scholar
Grolle, R. 1984. Lejeunea palaeomexicana n. sp., das erste Moos aus Mexikanischem Bernstein. Stuttgarter Beiträge zur Naturkunde, Serie B 108, 17.Google Scholar
Grolle, R. 1987. Radula steerei sp. nov. A further hepatic in Dominican amber. Memoirs of the New York Botanical Garden 45, 259–63.Google Scholar
Grolle, R. & Meister, K. 2004. The Liverworts in Baltic and Bitterfeld Amber. Jena: Weissdorn. 91 pp.Google Scholar
He, Q. & Zhu, R. -L. 2011. Spore output in selected species of Lejeuneaceae. Cryptogamie Bryologie 32, 107–12.Google Scholar
Heinrichs, J., Gradstein, S. R., Wilson, R. & Schneider, H. 2005. Towards a natural classification of liverworts (Marchantiophyta) based on the chloroplast gene rbcL. Cryptogamie Bryologie 26, 131–50.Google Scholar
Heinrichs, J., Dong, S., Schäfer-Verwimp, A., Pócs, T., Feldberg, K., Czumaj, A., Schmidt, A. R., Reitner, J, Renner, M. A. M., Hentschel, J., Stech, M. & Schneider, H. 2013a. Molecular phylogeny of the leafy liverwort Lejeunea (Porellales): evidence for a Neotropical origin, uneven distribution of sexual systems and insufficient taxonomy. PLoS ONE 8, e82547.Google Scholar
Heinrichs, J., Vitt, D. H., Schäfer-Verwimp, A., Ragazzi, E., Marzaro, G., Grimaldi, D. A., Nascimbene, P. C., Feldberg, K. & Schmidt, A. R. 2013b. The moss Macromitrium richardii (Orthotrichaceae) with sporophyte and calyptra enclosed in Hymenaea resin from the Dominican Republic. Polish Botanical Journal 58, 221–30.Google Scholar
Heinrichs, J., Kettunen, E., Lee, G. E., Marzaro, G., Pócs, T., Ragazzi, E., Renner, M. A. M., Rikkinen, J., Sass-Gyarmati, A., Schäfer-Verwimp, A., Scheben, A., Solórzano Kraemer, M. M., Svojtka, M. & Schmidt, A. R. 2015a. Lejeuneaceae (Marchantiophyta) from a species-rich taphocoenosis in Miocene Mexican amber, with a review of liverworts fossilised in amber. Review of Paleobotany and Palynology 221, 5970.Google Scholar
Heinrichs, J., Scheben, A., Lee, G. E., Váňa, J., Schäfer-Verwimp, A., Krings, M. & Schmidt, A. R. 2015b. Molecular and morphological evidence challenges the records of the extant liverwort Ptilidium pulcherrimum in Eocene Baltic amber. PLoS ONE 10, e0140977.Google Scholar
Heinrichs, J., Scheben, A., Bechteler, J., Lee, G. E., Schäfer-Verwimp, A., Hedenäs, L., Singh, H., Pócs, T., Nascimbene, P. C., Peralta, D. F., Renner, M. & Schmidt, A. R. 2016. Crown group Lejeuneaceae and pleurocarpous mosses in early Eocene (Ypresian) Indian amber. PLoS ONE 11, e0156301.Google Scholar
Herzog, T. 1916. Die Bryophyten meiner zweiten Reise durch Bolivia. Bibliotheca Botanica 87, 1347.Google Scholar
Hietz, P. 2010. Ecology and ecophysiology of epiphytes in tropical montane cloud forests. In Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds) Tropical Montane Cloud Forests, 6776. Cambridge, UK: Cambridge University Press.Google Scholar
Hietz, P. & Hietz-Seifert, U. 1995. Composition and ecology of vascular epiphyte communities along an altitudinal gradient in central Veracruz, Mexico. Journal of Vegetation Science 6, 487–98.Google Scholar
Hofstede, R. G. M., Wolf, J. H. D. & Benzing, D. H. 1993. Epiphytic biomass and nutrient status of a Colombian upper montane rain forest. Selbyana 14, 3745.Google Scholar
Hueber, F. M. & Langenheim, J. 1986. Dominican amber tree had African ancestors. Geotimes, 31, 810.Google Scholar
Iturralde-Vinent, M. & MacPhee, R. D. E. 1996. Age and paleogeographical origin of Dominican amber. Science 273, 1850–52.Google Scholar
Jack, J. B. & Stephani, F. 1892. Hepaticae Wallisianae. Hedwigia 31, 1127.Google Scholar
Johansson, D. R. 1989. Vascular epiphytism in Afric. In Lieth, H. & Werger, M. J. A. (eds) Tropical Rain Forest Ecosystems: Biogeographical and Ecological Studies, 183–94. Amsterdam: Elsevier Science Publishers. xvii+713 pp.Google Scholar
Köhler, L., Hölscher, D., Bruijnzeel, L. A. & Leuschner, C. 2010. Epiphyte biomass in Costa Rican old-growth and secondary montane rain forests and its hydrological significance. In Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds) Tropical Montane Cloud Forests, 6776. Cambridge, UK: Cambridge University Press. 768 pp.Google Scholar
Krömer, T., Kessler, M., Gradstein, S. R. & Acebey, A. 2005. Diversity patterns of vascular epiphytes along an elevational gradient in the Andes. Journal of Biogeography 32, 1799–809.Google Scholar
Kürschner, H., Frey, W. & Parolly, G. 1999. Patterns and adaptive trends of life forms, life strategies and ecomorphological structures in tropical epiphytic bryophytes – a pantropical synopsis. Nova Hedwigia 69, 7399.Google Scholar
Langenheim, J. H. 1966. Botanical source of amber from Chiapas, Mexico. Ciencia 24, 201–10.Google Scholar
Lee, G. E. 2013. A systematic revision of the genus Lejeunea Lib. (Marchantiophyta: Lejeuneaceae) in Malaysia. Cryptogamie Bryologie 34, 381484.Google Scholar
Lee, G. E., Schäfer-Verwimp, A., Schmidt, A. R. & Heinrichs, J. 2015. Transfer of the Miocene Lejeunea palaeomexicana to Ceratolejeunea. Cryptogamie Bryologie 36, 335–41.Google Scholar
Leuschner, C. 2010. Epiphyte biomass in Costa Rican old-growth and secondary montane rain forests and its hydrological significance. In Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds) Tropical Montane Cloud Forests, 268–74. Cambridge, UK: Cambridge University Press. 768 pp.Google Scholar
Libert, M. -A. 1820. Sur un genre nouveau d'hépatiques, Lejeunia. Annales générales des sciences physiques 6, 372–74.Google Scholar
Linnaeus, C. 1753. Species Plantarum. Stockholm: Salvius.Google Scholar
Lóriga, J., Schmidt, A. R., Moran, R. C., Feldberg, K., Schneider, H. & Heinrichs, J. 2014. The first fossil of a bolbitidoid fern belongs to the early-divergent lineages of Elaphoglossum (Dryopteridaceae). American Journal of Botany 101, 1466–75.Google Scholar
McCarthy, P. M. 2016. Checklist of the Lichens of Australia and its Island Territories. Australian Biological Resources Study, Canberra. Version 22 January 2016.Google Scholar
Mishra, K. M., Upreti, D. K., Nayaka, S. & Haridas, B. 2011. New taxa and new reports of Phyllopsora (lichenized Ascomycotina) from India. Mycotaxon 115, 2944.Google Scholar
Müller, C. 1874. Novitates bryothecae Muellerianae. 2. Musci Novo-Granatenses Wallisiani adjecis nonnullis aliis muscis novis andinis vel tropico-americanis vel australasiacis. Linnaea 38, 572620.Google Scholar
Müller, C. 1876. Musci Hildebrandtiani in Archipelago Comorense et in Somalia littoris Africani anno 1875 ab I. M. Hildebrandt lecti. Linnaea 40, 225300.Google Scholar
Müller, J. 1894. Conspectus systematicus lichenum Novae Zelandiae. Bulletin de l'Herbier Boissier. 2 (App. 1), 1114.Google Scholar
Müller, K. 1909. Die Lebermoose Deutschlands, Oesterreichs und der Schweiz, 2nd ed. (Dr. L. Rabenhorst's Kryptogamen-Flora von Deutschland, Oesterreich und der Schweiz, Band 6 Lieferung 7), 385448. Leipzig: Eduard Kummer.Google Scholar
Nannfeldt, J. A. 1932. Studien über die Morphologie und Systematik der nichtlichenisierten inoperculaten Discomyceten. Nova Acta Regiae Societatis Scientiarum Upsaliensis 8, 1368.Google Scholar
Nash, T. H. III. 2008. Nitrogen, its metabolism and potential contribution to ecosystems. In Nash, T. H. III (ed.) Lichen biology, 2nd edition, 216–33. Cambridge, UK: Cambridge University Press. 502 pp.Google Scholar
Osyczka, P. & Rola, K. 2013. Phenotypic plasticity of primary thallus in selected Cladonia species (lichenized Ascomycota: Cladoniaceae). Biologia 68, 365–72.Google Scholar
Pax, F. 1900. Prantl's Lehrbuch der Botanik (11th ed.), 1200. Leipzig: W. Engelmann.Google Scholar
Penney, D. 2010. Dominican Amber. In Penney, D. (ed.) Biodiversity of fossils in amber from the major world deposits, 2241. Manchester: Siri Scientific Press.Google Scholar
Poinar, G. O. Jr. 1991. Hymenaea protera sp. n. (Leguminosae, Caesalpinioideae) from Dominican amber has African affinities. Experientia 47, 1075–82.Google Scholar
Poinar, G. O. Jr., Peterson, E. B. & Platts, J. L. 2000. Fossil Parmelia in New World amber. Lichenologist 32, 263–69.Google Scholar
Poinar, G. O. Jr. & Brown, A. E. 2002. Hymenaea mexicana sp. nov. (Leguminosae: Caesalpinioideae) from Mexican amber indicates Old World connections. Botanical Journal of the Linnean Society 139, 125–32.Google Scholar
Poinar, G. O. Jr. & Poinar, R. 1999. The amber forest: A reconstruction of the vanished world. Princeton: Princeton University Press. 292 pp.Google Scholar
Reiner-Drehwald, M. E., Schmidt, A. R. & Heinrichs, J. 2012. The genus Lejeunea in Miocene amber from the Dominican Republic. Cryptogamie, Bryologie 33, 3338.Google Scholar
Reiner-Drehwald, M. E. & Goda, A. 2000. Revision of the genus Crossotolejeunea (Lejeuneaceae, Hepaticae). Journal of the Hattori Botanical Laboratory 89, 154.Google Scholar
Renner, M. A. M. 2014. Radula subg. Radula in Australasia and the Pacific (Jungermanniopsida). Telopea 17, 107–67.Google Scholar
Rikkinen, J. & Poinar, G. O. Jr. 2008. A new species of Phyllopsora (Lecanorales, lichen-forming Ascomycota) from Dominican amber, with remarks on the fossil history of lichens. Journal of Experimental Botany 59, 1007–11.Google Scholar
Schiffner, V. 1893. Hepaticae. In Engler, A. & Prantl, K. (eds) Die Natürlichen Pflanzenfamilien Teil. I, Abt. 3, 1144. Leipzig: Engelmann.Google Scholar
Schimper, W. P. 1879. Palaeophytologie. In von Zittel, K. A. (ed.) Handbuch der Palaeontologie, 1958. München: Oldenbourg.Google Scholar
Schljakov, R. N. 1972. [On the higher taxa of liverworts – class Hepaticae s.str.] Botanicheskii Zhurnal 57, 496508. [In Russian.]Google Scholar
Schneider, H., Schmidt, A. R., Nascimbene, P. C. & Heinrichs, J. 2015. A new Dominican amber fossil of the derived fern genus Pleopeltis confirms generic stasis in the epiphytic fern diversity of the West Indies. Organisms Diversity & Evolution 15, 277–83.Google Scholar
Schwägrichen, C. F. 1823–1827. Species Muscorum Frondosorum, Supplementum Secundum. Leipzig: Lipsiae.Google Scholar
Spruce, R. 1884. Hepaticae amazonicae et andinae. I. Transactions and Proceedings of the Botanical Society of Edinburgh 15, 1308.Google Scholar
Stephani, F. 1890. Hepaticae africanae novae in insulis Bourbon, Maurice et Madagascar lectae. Botanical Gazette 15, 281–92.Google Scholar
Stephani, F. 1898. Species hepaticarum 1. Bulletin de l'Herbier Boissier 6, 309–43.Google Scholar
Stotler, R. E. & Crandall-Stotler, B. J. 1977. A checklist of the liverworts and hornworts of North Americ. Bryologist 80, 405–28.Google Scholar
Stotler, R. E. & Crandall-Stotler, B. J. 2000. Morphology and classification of the Marchantiophyta. In Shaw, A. J. & Goffinet, B. (eds) Bryophyte Biology, 2170. Cambridge: Cambridge University Press.Google Scholar
Swinscow, T. D. V. & Krog, H. 1981. The genus Phyllopsora, with a report on East African species. Lichenologist 13, 203–47.Google Scholar
Tan, B. C. & Jia, Y. 1999. A preliminary revision of Chinese Sematophyllaceae. Journal of the Hattori Botanical Laboratory 86, 170.Google Scholar
Timdal, E. 2008. Studies on Phyllopsora (Ramalinaceae) in Peru. Lichenologist 40, 337–62.Google Scholar
Timdal, E. 2011. The lichen genus Phyllopsora (Ramalinaceae) in the West Indies. Bibliotheca Lichenologica 106, 319–51.Google Scholar
Timdal, E. & Krog, H. 2001. Further studies on African species of the lichen genus Phyllopsora (Lecanorales). Mycotaxon 77, 5789.Google Scholar
Tixier, P. 1969. De Sematophyllaceis. I. Essay de revision des Clastobryaceae de Luzon. Journal of the Hattori Botanical Laboratory 32, 2134.Google Scholar
Tixier, P. 1977. Clastobryoidées et taxa apparentés. Revue Bryologique et Lichénologique 43, 397464.Google Scholar
Upreti, D. K., Divakar, P. K. & Nayaka, S. 2003. Notes on species of the lichen genus Phyllopsora in India. Bibliotheca Lichenologica 86, 185–91.Google Scholar
Váňa, J., Schäfer-Verwimp, A., Bechteler, J., Schmidt, A. R. & Heinrichs, J. 2015. Notoscyphus grollei sp. nov. in Bitterfeld amber rather than the extant Notoscyphus lutescens (Lehm. & Lindenb.) Mitt. Phytotaxa 222, 151–54.Google Scholar
Villarreal, J. C. & Renner, S. S. 2014. A review of molecular-clock calibrations and substitution rates in liverworts, mosses and hornworts, and a timeframe for a taxonomically cleaned-up genus Nothoceros. Molecular Phylogenetics and Evolution 78, 2535.Google Scholar
Wang, J., Zhu, R. -L. & Gradstein, S. R. 2016. Taxonomic revision of Lejeuneaceae subfamily Ptychanthoideae (Marchantiophyta) in China. Bryophytorum Bibliotheca 65, 1141.Google Scholar
Yamada, K. 1979. A revision of Asian taxa of Radula, Hepaticae. Journal of the Hattori Botanical Laboratory 45, 201322.Google Scholar
Yamada, K. 1983. Four new species of Radula from Cuba. Journal of the Hattori Botanical Laboratory 54, 241–49.Google Scholar
Yamada, K. 1990. Two new species of Radula (Hepaticae) from Australia and Brazil. Journal of Japanese Botany 65, 16.Google Scholar
Yamada, K. 2003. Radulaceae. In Gradstein, S. R. & Costa, D. P. (eds) The Hepaticae and Anthocerotae of Brazil. Memoirs of the New York Botanical Garden 87, 1318.Google Scholar
Ye, W. & Zhu, R. -L. 2010. Leucolejeunea, a new synonym of Cheilolejeunea (Lejeuneaceae), with special reference to new combinations and nomenclature. Journal of Bryology 32, 279–82.Google Scholar