Hostname: page-component-797576ffbb-lm8cj Total loading time: 0 Render date: 2023-12-11T10:19:34.977Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Traquair's lungfish from Loanhead: dipnoan diversity and tooth plate growth in the late Mississippian

Published online by Cambridge University Press:  04 March 2019

Timothy R. SMITHSON*
University Museum of Zoology, Downing Street, Cambridge CB2 3EJ, UK. Email:
School of Geosciences, Grant Institute of Earth Sciences, University of Edinburgh, Edinburgh EH9 3FE, UK.
University Museum of Zoology, Downing Street, Cambridge CB2 3EJ, UK. Email:
*Corresponding author


Ramsay Heatley Traquair, the eminent Victorian Scottish palaeoichthyologist and museum curator, procured an extensive collection of Palaeozoic fishes from across Scotland with the help of local miners and quarrymen. One very productive locality near Edinburgh was Loanhead. Traquair described numerous fossil fish from this Serpukhovian site, including four lungfish taxa: Ctenodus interruptus, Sagenodus quinquecostatus, Uronemus splendens and Ctenodus angustulus. The first three are now quite well known, but the fourth was only briefly described and never figured. It is based entirely on tooth plates, which are unusual both in their very small size and the arrangement of the tooth ridges. They lack the diagnostic characters of Ctenodus tooth plates and are here renamed Clackodus angustulus. A further taxon, Conchopoma sp., has recently been identified. Represented by a spade-shaped parasphenoid and denticulated jaw elements, it is the earliest known occurrence of the genus, extending its range into the Mississippian. A sixth taxon may be represented by an isolated parasphenoid bearing an anterior process, previously only seen in Devonian lungfish. The presence of up to six lungfish taxa at a single locality is unprecedented in the Carboniferous and indicates that the high level of lungfish diversity encountered in the Tournaisian of the Scottish Borders continued throughout the Mississippian, adding to the growing evidence that post-Devonian lungfish evolution was not as limited as previously proposed. This may have been due to changes in tooth plate growth, enabling greater variation in dentition and diet. In most Devonian taxa, tooth plate growth can be explained by comparison with that in extant forms, but analysis of Carboniferous tooth plates suggest growth was different in many taxa, possibly based on more than one pioneer tooth, allowing for novel patterns of tooth ridges and different types of teeth to develop on the same plate.

Copyright © The Royal Society of Edinburgh 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


7. References

Ahlberg, P. E. 1991. A re-examination of sarcopterygian interrelationships, with special reference to the Porolepiformes. Zoological Journal of the Linnean Society 103, 241297.Google Scholar
Ahlberg, P. E., Smith, M. M. & Johanson, Z. 2006. Developmental plasticity and disparity in early dipnoan (lungfish) dentitions. Evolution & Development 8, 331349.Google Scholar
Andrews, S. M. & Carroll, R. L. 1991. The order Adelospondyli: Carboniferous lepospondyl amphibians. Transactions of the Royal Society of Edinburgh: Earth Sciences 82, 239275.Google Scholar
Bemis, W. E. 1984. Morphology and growth of lepidosirenid lungfish tooth plates (Pisces: Dipnoi). Journal of Morphology 179, 7393.Google Scholar
Browne, M. A. E., Dean, M. T., Hall, I. H. S., McAdam, A. D., Monro, S. K. & Chisholm, J. I. 1999. A lithographic framework for the Carboniferous of the Midland Valley of Scotland. British Geological Survey Research Report RR/99/07, 143.Google Scholar
Carpenter, D. K., Falcon-Lang, H. J., Benton, M. J. & Henderson, E. 2014. Carboniferous (Tournaisian) fish assemblages from the Isle of Bute, Scotland: systematics and palaeoecology. Palaeontology 57, 12151240.Google Scholar
Challands, T. J., Bennett, C. E., Clack, J. A., Fraser, N., Kearsey, T. I., Marshall, J. E. A., Smithson, T. R. & Walsh, S. A. 2015. The Tournaisian: a sarcopterygian incubator. 59th Annual Meeting of the Palaeontological Association, Abstracts. p. 57. Scholar
Challands, T. J., Smithson, T. R., Clack, J. A., Bennett, C. E., Marshall, J. E. A., Wallace-Johnson, S. M. & Hill, H. In press. A lungfish survivor of the end-Devonian extinction and an Early Carboniferous dipnoan radiation. Journal of Systematic Palaeontology.Google Scholar
Chang, M.-M. & Yu, X.-B. 1982. Structure and phylogenetic significance of Diabolepis speratus gen. et sp. nov., a new dipnoan-like form from the lower Devonian of eastern Yunnan, China. Proceedings of the Linnean Society of New South Wales 107, 171184.Google Scholar
Clack, J. A., Sharp, E. L. & Long, J. A. 2011. The fossil record of lungfishes. In Jørgensen, J. M. & Joss, J. (eds) The biology of lungfishes, 142. Enfield, NH: USA Science Publishers Inc. 530 pp.Google Scholar
Clack, J. A., Bennett, C. E., Carpenter, D. K., Davies, S. J., Fraser, N. C., Kearsey, T. I., Marshall, J. E. A., Millward, D., Otoo, B. K. A., Reeves, E. J., Ross, A. J., Ruta, M., Smithson, K. Z., Smithson, T. R. & Walsh, S. A. 2016. Phylogenetic and environmental diversity revealed for Tournaisian tetrapods. Nature Ecology and Evolution 1, 111.Google Scholar
Clack, J. A., Challands, T. J., Smithson, T. R. & Smithson, K. Z. 2018. Newly recognized Famennian lungfish from East Greenland revel tooth plates diversity and blur the Devonian-Carboniferous boundary. Papers in Palaeontology. DOI: 10.1002/spp2.1242.Google Scholar
Clement, A. M. 2012. A new species of long-snouted lungfish from the Late Devonian of Australia, and its functional and biogeographical implications. Palaeontology 55, 5171.Google Scholar
Fraser, G. J., Berkovitz, B. K., Graham, A. & Smith, M. M. 2006. Gene deployment for tooth replacement in the rainbow trout (Oncorhynchus mykiss): a developmental model for evolution of the osteichthyan dentition. Evolution & Development 8, 446457.Google Scholar
Friedman, M. 2007. The interrelationships of Devonian lungfishes (Sarcopterygii: Dipnoi) as inferred from neurocranial evidence and new data from the genus Soederberghia Lehman, 1959. Zoological Journal of the Linnean Society 151, 115171.Google Scholar
Heidtke, U. 1986. Über Neufunde von Conchopoma gadiforme Kner (Dipnoi: Pisces). Palaeontologische Zeitschrift 60, 299312.Google Scholar
Henrichsen, I. G. C. 1972. A catalogue of fossil vertebrates in the Royal Scottish Museum, Edinburgh. Part three: Actinistia and Dipnoi. Edinburgh: Royal Scottish Museum. 26 pp.Google Scholar
Huxley, T. H. 1880. On the application of the laws of evolution to the arrangement of the Vertebrata and more particularly to the Mammalia. Proceedings of the Zoological Society of London 1880, 649662.Google Scholar
Jablonski, D. 2001. Lessons from the past: evolutionary impact of mass extinctions. Proceedings of the National Academy of Sciences 98, 53935398.Google Scholar
Johanson, Z. & Ahlberg, P. E. 2013. Phylogeny of lungfishes. In Jørgensen, J. M. & Joss, J. (eds) The biology of lungfishes, 4360. Enfield, NH: USA Science Publishers Inc.Google Scholar
Kemp, A. 1977. The pattern of tooth plate formation in the Australian lungfish, Neoceratodus forsteri Kreft. Zoological Journal of the Linnean Society 60, 223258.Google Scholar
Kemp, A. 1987. The biology of the Australian lungfish Neoceratodus forsteri (Kreft 1870). In Bemis, W. E., Burggren, W. W., Kemp, N. E. & Alan, R. (eds) The biology and evolution of lungfishes, 181198. New York: Liss Inc.Google Scholar
Kemp, A., 2003. Developmental anomalies in the tooth plates and jaw bones of lungfish. Journal of Vertebrate Paleontology 23, 517531.Google Scholar
Kemp, A., Cavin, L. & Guinot, G. 2017. Evolutionary history of lungfishes with a new phylogeny of post-Devonian genera. Palaeogeography, Palaeoclimatology, Palaeoecology 471, 209219.Google Scholar
Krupina, N. I. & Reisz, R. R. 1999. Reconstruction of dentition in hatchlings of Andreyevichthys epitomus, a late Famennian dipnoan from Russia. Modern Geology 24, 99108.Google Scholar
Lehman, J.-P. 1959. Les dipneustes du Dévonian superior du Groenland. Meddelelser om Grønland 160, 158.Google Scholar
Lloyd, G. T., Wang, S. C. & Brusatte, S. L. 2011. Identifying heterogeneity in rates of morphological evolution: discrete character change in the evolution of lungfish (Sarcopterygii; Dipnoi). Evolution 66, 330348.Google Scholar
Long, J. A. & Trinajstic, K. 2010. The late Devonian Gogo Formation Lägerstatte of Western Australia: exceptional early vertebrate preservation and diversity. Annual Review of Earth and Planetary Sciences 38, 255279.Google Scholar
Miles, R. S. 1977. Dipnoan (Lungfish) skulls and the relationships of the group: a study based on new species from the Devonian of Australia. Zoological Journal of the Linnean Society 61, 1328.Google Scholar
Müller, J. 1845. Über den Bau und die Grenzen der Ganoiden, and über dat natürliche System der Fische. Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin 1844, 117216.Google Scholar
Romer, A. S. 1955. Herpetichthyes, Amphiboidei, Choanichthyes or Sarcopterygii. Nature 176, 126.Google Scholar
Schultze, H. P. 1975. Die Lungenfisch-Gattung Conchopoma (Pisces, Dipnoi). Senckenbergiana Lethaea 56, 191231.Google Scholar
Schultze, H. P. & Chorn, J. 1997. The Permo-Carboniferous genus Sagenodus and the beginnings of modern lungfish. Contributions to Zoology 67, 970.Google Scholar
Sharp, E. 2007. The systematics, taxonomy and phylogeny of the British Carboniferous lungfishes. Unpublished PhD Thesis, University of Cambridge, UK.Google Scholar
Sharp, E. & Clack, J. A. 2012. Redescription of the lungfish Straitonia waterstoni from the Visean of Lothian, Scotland. Earth and Environmental Science Transactions of the Royal Society of Scotland 102, 179189.Google Scholar
Sharp, E. & Clack, J. A. 2013. A review of the Carboniferous lungfish genus Ctenodus Agassiz, 1838 from the United Kingdom, with new data from an articulated specimen of Ctenodus interruptus Barkas, 1869. Earth and Environmental Science Transactions of the Royal Society of Scotland 104, 169204.Google Scholar
Smith, M. M. 1985. The pattern of histogenesis and growth of tooth plates in larval stages of extant lungfish. Journal of Anatomy 140, 627643.Google Scholar
Smith, M. M. 2003. Vertebrate dentitions at the origin of jaws: when and how pattern evolved. Evolution and Development 5, 394413.Google Scholar
Smith, M. M., Smithson, T. R. & Campbell, K. S. W. 1987. The relationships of Uronemus: a Carboniferous Dipnoan with highly modified tooth plates. Philosophical Transactions of the Royal Society, London, B 317, 299327.Google Scholar
Smith, M. M., Okabe, M. & Joss, J. 2009. Spatial and temporal pattern for the dentition in the Australian lungfish revealed with Sonic hedgehog expression profile. Proceedings of the Royal Society of London B: Biological Sciences 276, 623631.Google Scholar
Smith, M. M. & Johanson, Z. 2010. The dipnoan dentition: a unique adaptation with a longstanding evolutionary record. In Jørgensen, J. M. & Joss, J. (eds) The biology of lungfishes, 219244. Enfield, NH: USA Science Publishers Inc.Google Scholar
Smith, M. M. & Krupina, N. I. 2001. Conserved developmental processes constrain evolution of lungfish dentitions. Journal of Anatomy 199, 161168.Google Scholar
Smithson, T. R. 1985. Scottish Carboniferous amphibian localities. Scottish Journal of Geology 21, 123142.Google Scholar
Smithson, T. R., Wood, S. P., Marshall, J. E. A. & Clack, J. A. 2012. Earliest Carboniferous tetrapod and arthropod faunas populate Romer's Gap. Proceedings of the National Academy of Sciences 109, 45324537.Google Scholar
Smithson, T. R., Richards, K. R. & Clack, J. A. 2016. Lungfish diversity in Romer's Gap: reaction to the end-Devonian extinction. Palaeontology 59, 2944.Google Scholar
Smithson, T. R., Browne, M. A. E., Davies, S. J., Marshall, J. E. A., Millward, D., Walsh, S. A. & Clack, J. A. 2017. A new Mississippian tetrapod from Fife, Scotland, and its environmental context. Papers in Palaeontology 3, 547557.Google Scholar
Thomson, K. S. 1965. On the relationships of certain Carboniferous Dipnoi; with the description of four new forms. Proceedings of the Royal Society of Edinburgh Section B (Biology) 69, 221245.Google Scholar
Thomson, K. S. & Campbell, K. S. W. 1971. The structure and relationships of the primitive Devonian lungfish- Dipnorhynchus sussmilchi (Etheridge). Bulletin of the Peabody Museum of Natural History 58, 1109.Google Scholar
Traquair, R. H. 1873. On a new genus of fossil fish of the order Dipnoi. Geological Magazine 10, 552555.Google Scholar
Traquair, R. H. 1881. Notice of new fish remains from the Blackband Ironstone of Borough Lee, near Edinburgh. No III. Geological Magazine 2, 3437.Google Scholar
Traquair, R. H. 1882. Notice of new fish remains from the Blackband Ironstone of Borough Lee, near Edinburgh. Geological Magazine 2 , 540546.Google Scholar
Traquair, R. H. 1890a. Notice on new and little known fish remains from the Blackband Ironstone of Borough Lee, near Edinburgh. No VI. Geological Magazine 7, 249252.Google Scholar
Traquair, R. H. 1890b. List of the fossil Dipnoi and Ganoidei of Fife and the Lothians. Proceedings of the Royal Society of Edinburgh 17, 385400.Google Scholar
Traquair, R. H. 1903. On the distribution of fossil fish-remains in the Carboniferous rocks of the Edinburgh district. Transactions of the Royal Society of Edinburgh 40, 687707.Google Scholar
Tulloch, W. & Walton, H. S. 1958. The geology of the Midlothian coalfield. Edinburgh: HMSO.Google Scholar
Watson, D. M. S. & Gill, E. L. 1923. The structure of certain Palaeozoic Dipnoi. Journal of the Linnean Society of London, Zoology 35, 163216.Google Scholar
Westoll, T. S. 1949. On the evolution of the Dipnoi. In Jepsen, G. L., Mayr, E. & Simpson, G. G. (eds) Genetics, paleontology, and evolution, 121184. Princeton, NJ: Princeton University Press.Google Scholar
Zhang, Z., Lan, Y., Chai, Y. & Jiang, R. 2009. Antagonistic actions of Msx1 and Osr2 pattern mammalian teeth into a single row. Science 323, 12321234.Google Scholar