Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-22T19:30:27.345Z Has data issue: false hasContentIssue false

13.—Zoning of Ore Deposits: Types and Causes*

Published online by Cambridge University Press:  06 July 2012

H. L. Barnes
Affiliation:
Ore Deposits Research Section, The Pennsylvania State University, University Park, Pennsylvania.

Synopsis

The zoning found in ore deposits is dominantly of two distinctive types: that in syngenetic sedimentary deposits, like the Kupferschiefer, and that in common hydrothermal deposits of either epigenetic or syngenetic characteristics. Here, epigenetic hydrothermal deposits include those commonly classified as vein, porphyry copper, contact metasomatic, and Mississippi Valley deposits; the syngenetic hydrothermal deposits are conformable, massive ores such as at Rammelsberg. The two zoning sequences, beginning nearest the source of the metals, are: in hydrothermal deposits, Fe—Ni—Sn—Cu—Zn—Pb—Ag—Au—Sb—Hg, and in sedimentary deposits, Cu—Ag—Pb—Zn.

A zoning sequence represents the natural order of increasing solubilities of the metallic sulphides and other minerals in ore-forming solutions. Comparison of zoning sequences with relative solubilities in proposed ore solutions provides a rigorous test of the efficacy of such solutions. When corrected for relative metal concentrations (mass-action effect), then both theoretically predicted, and experimental relative solubilities of sulphide complexes match precisely the order of hydrothermal zoning. The order in sedimentary zoning is identical to the mass-action-corrected calculation of the sequence in which sulphides must precipitate from solutions containing metallic ions or weak chloride or hydroxyl complexes. The consanguinity of these correlations imply (1) that hydrothermal zoning is the product of deposition from sulphide complexes, and (2) that chloride complexes may be the metal-transporting agent in sedimentary deposits.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References to Literature

Amstutz, G. C. and Bernard, A. J. (Eds), 1973. Ores in Sediments. Berlin: Springer-Verlag.Google Scholar
Anderson, C. A., 1969. Massvie sulfide deposits and volcanism. Econ. Geol., 64, 129146.Google Scholar
Anger, G., Nielson, H., Puchelt, H. and Ricke, W., 1966. Sulfur isotopes in the Rammelsberg ore deposit (Germany). Econ. Geol., 61, 511536.Google Scholar
Anhaeusser, C. R. and Button, A., 1972. A petrographic and mineralogic study of the copper-bearing formations in the Witvlei Area, South West Africa. Circ. Econ. Geol. Res. Unit, Univ. Witwatersrand, 66, 139.Google Scholar
Barnes, H. L., 1962. Mechanisms of mineral zoning. Econ. Geol., 57, 3037.Google Scholar
Barnes, H. L., 1967. Sphalerite solubility in ore solutions of the Illinois-Wisconsin District. Econ. Geol. Mono., 3, 326331.Google Scholar
Barnes, H. L. and Czamanske, G. K., 1967. Solubilities and transport of ore minerals. In Geochemistry of Hydrothermal Ore Deposits, 334381. (Barnes, H. L., Ed.) New York: Holt, Rinehart and Winston.Google Scholar
Barnes, H. L. and Kullerud, G., 1961. Equilibria in sulfur-containing aqueous solutions, in the system Fe–S–O, and their correlation during ore deposition. Econ. Geol., 56, 648688.Google Scholar
Barnes, H. L., Lusk, J. and Potter, R. W., 1972. Compositions of fluid inclusions. Int. Geol. Congr., Abstr., 24, 542.Google Scholar
Barnes, H. L., Romberger, S. B. and Stemprok, M., 1967. Ore solution chemistry. II. Solubility of HgS in sulfide solutions. Econ. Geol., 62, 957982.Google Scholar
Berner, R. A., 1971. Principles of Chemical Sedimentology. New York: McGraw-Hill.Google Scholar
Brongersma-Sanders, M., 1967. Permian wind and the occurrence of fish and metals in the Kupferschiefer and Marl Slate. Proc. Inter-Univ. Geol. Congr. U.K., 15, 6171.Google Scholar
Clark, A. L., 1971. Strata-bound copper sulfides in the Precambrian Belt Super-group, Northern Idaho and Northern Montana. Soc. Min. Geol. Jap., Spec. Issue, 3, 261267.Google Scholar
Cotton, F. A. and Wilkinson, G., 1962. Advanced Inorganic Chemistry. New York: Interscience.Google Scholar
Croxford, N. J. W. and Japhcott, S., 1972. The McArthur lead-zinc-silver deposit, N.T. Proc. Australas. Inst. Min. Metall., 243, 126.Google Scholar
Davidson, C. F., 1962. The origin of some strata-bound sulfide ore deposits. Econ. Geol., 57, 265273.Google Scholar
Degens, E. T., Okada, H., Honjo, S. and Hathaway, J. C., 1972. Microcrystalline sphalerite in resin globules suspended in Lake Kivu, East Africa. Mineralium Deposita, 7, 112.Google Scholar
Degens, E. T. and Ross, D. A., 1972. Chronology of the Black Sea over the last 25,000 years. Chem. Geol., 10, 116.Google Scholar
Degens, E. T., Von, Herzen R. P., Wong, H.-K., Deuser, W. G. and Jannasch, H. W., 1973. Lake Kivu: structure, chemistry and biology of an East African Rift Lake, Geol. Rdsch., 62, 245277.Google Scholar
Freeze, A. C., 1966. On the origin of the Sullivan Orebody, Kimberely, B.C. Can. Inst. Min. Met., Spec. Vol., 8, 263279.Google Scholar
Gilmour, P., 1971. Strata-bound massive pyritic sulfide deposits—a review. Econ. Geol., 66, 12391249.Google Scholar
Hackett, J. P. Jr., and Bischoff, J. L., 1973. New data on the stratigraphy, extent, and geologic history of the Red Sea geothermal deposits. Econ. Geol., 68, 553564.Google Scholar
Haranczyk, C., 1970. Zechstein lead-bearing shales in the Fore-Sudetian Monocline in Poland. Econ. Geol., 65, 481495.Google Scholar
Hawley, J. E., 1965. Upside-down zoning at Frood, Sudbury, Ontario. Econ. Geol., 60, 529575.Google Scholar
Helgeson, H. C., 1969. Thermodynamics of hydrothermal systems at elevated temperatures and pressures. Am. J. Sci., 267, 729804.CrossRefGoogle Scholar
Honnorez, J., Honnorez-Guerstein, B., Valette, J. and Wauschkuhn, A., 1973. Present day formation of an exhalative sulfide deposit at Vulcano (Tyrrhenian Sea), Part II: Active crystallization of fumarolic sulfides in the volcanic sediments of the Baia di Levante. In Ores in Sediments, 139166 (Amstutz, G. C. and Bernard, A. J., Eds.). Berlin: Springer-Verlag.Google Scholar
Hutchinson, R. W. and Searle, D. L., 1971. Stratabound pyrite deposits in Cyprus and relations to other sulphide ores. Soc. Mining Geol. Jap., Spec. Issue, 3, 198205.Google Scholar
Irvine, W. T., Gondi, J. and Sullivan Mine Geological Staff, 1972. Major lead-zinc deposits of Western Canada. Int. Geol. Congr., 24, Guidebook for Excursion A24.Google Scholar
Kutina, J., 1963. The distinguishing of the monoascendent and polyascendent origin of associated minerals in the study of the zoning of the Pribram ore veins. In Problems of Postmagmatic Ore Deposition, 1, 200206. Prague Symposium.Google Scholar
Kutina, J., 1965. The concept of monoascendent and polyascendent zoning. In Problems of Postmagmatic Ore Deposition, 2, 194196. Prague Symposium.Google Scholar
Lowell, J. D. and Guilbert, J. M., 1970. Lateral and vertical alteration—mineralization zoning in porphyry copper deposits. Econ. Geol., 65, 373408.Google Scholar
Lusk, J., 1969. Base metal zoning in the Heath Steele B-l Orebody, New Brunswick, Canada. Econ. Geol., 64, 509518.Google Scholar
Lusk, J., 1972. Examination of volcanic-exhalative and biogenic origins for sulfur in the stratiform massive sulfide deposits of New Brunswick. Econ. Geol., 67, 169183.Google Scholar
McAllister, A. L. and Lamarche, R. Y., 1972. Mineral deposits of Southern Quebec and New Brunswick, Int. Geol. Congr., 24, Guidebook for Excursion A58.Google Scholar
McDonald, J. A., 1970. Some effects of deformation on sulfide-rich layers in lead-zinc ore bodies, Mount Isa, Queensland. Econ. Geol., 65, 273–298, 355357.Google Scholar
Manheim, F. T., 1961. A geochemical profile in the Baltic Sea. Geochim. Cosmochim. Acta, 25, 5270.Google Scholar
Matsukuma, T. and Horikoshi, E., 1970. Kuroko deposits in Japan, a review. In Volcanism and Ore Genesis (Watanabe Volume), 153179. (Tatumi, T. Ed.) Tokyo: Univ. Press.Google Scholar
Mendelsohn, F. (Ed.), 1961. The Geology of the Northern Rhodesian Copperbelt. London: Macdonald.Google Scholar
Nriagu, J. O., 1970. Solubility of Galena under Hydrothermal Conditions. Ph.D. Diss., Univ. Toronto.Google Scholar
Nriagu, J. O., 1971. Expressions for calculating the solubilities of metal sulfides in hydrothermal solutions. Can. J. Earth Sci., 8, 813819.Google Scholar
Park, C. F. Jr., 1955. The zonal theory of ore deposits. Econ. Geol. 50th Anniv. Vol., 226248.Google Scholar
Parker, R. L., 1967. Composition of the earth's crust. In Data of Geochemistry. (Fleischer, M. Ed.) Prof. Pap. U.S. Geol. Surv., 440–D, 119.Google Scholar
Puchelt, H., 1973. Recent iron sediment formation at the Kameni Islands, Santorini (Greece). In Ores in Sediments, 227245. (Amstutz, G. C. and Bernard, A. J. Eds.) Berlin: Springer.Google Scholar
Rentzsch, J. and Thiergärtner, H., 1972. Vergleichende geologisch-mathematische Untersuchung der Buntmetallverteilung in Laggerstätten von Typ Kupferschiefer. Z. Angew. Geol., 18, 537548.Google Scholar
Roedder, E., 1972. Composition of fluid inclusions. In Data of Geochemistry. (Fleischer, M., Ed.) Prof. Pap. U.S. Geol. Surv., 440–JJ, 1164.Google Scholar
Romberger, S. B., 1968. Solubility of Copper in Aqueous Sulfide Solutions Coexisting with Covellite from 25° to 200°C, with Geologic Applications. Ph.D. Diss., Pennsylvania State Univ.Google Scholar
Romberger, S. B. and Barnes, H. L., 1970. Ore solution chemistry. III. Solubility of CuS in sulfide solutions. Econ. Geol., 65, 901919.Google Scholar
Rose, A. W., 1970. Origin of trace element distribution patterns in sulfides of the Central and Bingham Districts, Western U.S.A. Mineralium Deposita, 5, 157163.Google Scholar
Ross, D. A., Degens, E. T. and Macilvaine, J., 1970. Black Sea: Recent sedimentary history. Science, N.Y., 170, 163165.Google Scholar
Sangster, D. F., 1971. Sulphur isotopes, stratabound sulphide deposits, and ancient seas. Soc. Mining Geol. Jap., Spec. Issue 3, 295299.Google Scholar
Sangster, D. F., 1972. Precambrian volcanogenic massive sulphide deposits in Canada: a review. Geol. Surv.Pap. Can., 72–22, 144.Google Scholar
Sasaki, A. and Kajiwara, Y., 1971. Evidence of isotopic exchange between sea-water sulfate and some syngenetic sulfide ores. Soc. Mining Geol. Jap., Spec. Issue 3, 289294.Google Scholar
Schwarcz, H. P. and Burnie, S. W., 1973. Influence of sedimentary environments on sulfur isotope ratios in clastic rocks: a review. Mineralium Deposita, 8, 264277.Google Scholar
Scott, S. D. and Barnes, H. L., 1971. Sphalerite geothermometry and geobarometry. Econ. Geol., 66, 653669.Google Scholar
Scott, S. D. and Kissin, S. A., 1973. Sphalerite composition in the Zn–Fe–S system below 300°C. Econ. Geol., 68, 475479.Google Scholar
Seward, T. M., 1973. Thio complexes of gold and the transport of gold in hydrothermal solutions. Geochim. Cosmochim. Acta, 37, 379399.Google Scholar
Sillén, L. G. and Martell, A. E., 1964. Stability constants of metal-ion complexes. Spec. Publs Chem. Soc., 17.Google Scholar
Skinner, B. J., White, D. E., Rose, H. J. and Mays, R. E., 1967. Sulfides associated with the Salton Sea geothermal brine. Econ. Geol., 62, 316330.Google Scholar
Spencer, D. W., Brewer, P. G. and Sachs, P. L., 1972. Aspects of the distribution and trace element composition of suspended matter in the Black Sea. Geochim. Cosmochim. Acta, 36, 7186.Google Scholar
Stanton, R. L., 1972. Stratiform sulfides of marine and marine-volcanic association. In Ore Petrology, 495540. New York: McGraw-Hill.Google Scholar
Stanton, R. L. and Rafter, T. A., 1966. The isotopic constitution of sulphur in some stratiform lead-zinc sulphide ores. Mineralium Deposita, 1, 1629.Google Scholar
Takéuchi, Y. (Ed.), 1971. Stratabound sulphide ore deposits. Symp Int. Ass. Genesis Ore Deposits. Soc. Mining Geol. Jap., Spec. Issue 3, 167315.Google Scholar
Tatsumi, T. (Ed.), 1970. Volcanism and Ore Genesis (Watanabe Volume). Tokyo: Univ. Press.Google Scholar
Tatsumi, T. and Watanabe, T., 1971. Geological environment of formation of the Kuroko-type deposits. Soc. Mining Geol. Jap., Spec. Issue, 3, 216220.Google Scholar
Taylor, H. P. Jr., 1963 a. Importance of chalcophile element abundances in determining the sequence of sulfide mineral deposition from monoascendent ore-forming solutions. In Problems of Postmagmatic Ore Deposition, I, 267272. Prague Symposium.Google Scholar
Taylor, H. P. Jr., 1963 b. Evolution of chemical composition of ore-bearing solutions dependent on the same source. In Problems of Postmagmatic Ore Deposition, I, 307311. Prague Symposium.Google Scholar
Tempelman-Kluit, D. J., 1972. Geology and origin of the Faro, Vangordo, and Swim concordant zinc-lead deposits, Central Yukon Territory. Bull. Geol. Surv. Can., 208.Google Scholar
Turekian, K. K., 1969. The oceans, streams, and atmospheres. In Handbook of Geochemistry, 297323. (Wedepohl, K. H., Ed.) Berlin: Springer-Verlag.Google Scholar
Valette, J. N., 1972. Distribution of certain trace elements in marine sediments surrounding Vulcano Island (Italy). In Ores in Sediments, 321337. (Amstutz, G. C. and Bernard, A. J., Eds.) Berlin: Springer-Verlag.Google Scholar
Wagman, D. D., 1969. Selected values of chemical thermodynamic properties. Natn. Bur. Stand. Tech. Note, 270–4.Google Scholar
Wagman, D. D., Evans, W. H., Parker, V. B., Halow, I., Bailey, S. M. and Schumm, R. H., 1968. Selected values of chemical thermodynamic properties. Natn. Bur. Stand. Tech. Note, 270–3.Google Scholar
Wedepohl, K. H., 1964. Untersuchungen am Kupferschiefer in Nordwestdeutschland; Ein Beitrag zur Deutung der Genese bituminöser Sedimente. Geochim. Cosmochim. Acta, 28, 305364.Google Scholar
Wedepohl, K. H., 1971. Kupferschiefer as a prototype of syngenetic sedimentary ore deposits. Soc. Mining Geol. Jap., Spec. Issue, 3, 268273.Google Scholar
White, D. E., Hem, J. D. and Waring, G. A., 1963. Chemical composition of sub-surface waters. In Data of Geochemistry. (Fleischer, M., Ed.) Prof. Pap. U.S. Geol. Surv., 440–F, 167.Google Scholar
Whyte, R. J. and Green, M. E., 1971. Geology and paleogeography of Chibuluma West Orebody, Zambian Copperbelt. Econ. Geol., 66, 400424.Google Scholar