Hostname: page-component-84b7d79bbc-2l2gl Total loading time: 0 Render date: 2024-07-26T16:28:42.466Z Has data issue: false hasContentIssue false

Latent trajectories of adolescent antisocial behavior: Serotonin transporter linked polymorphic region (5-HTTLPR) genotype influences sensitivity to perceived parental support

Published online by Cambridge University Press:  05 February 2016

Irene Tung
Affiliation:
University of California, Los Angeles
Steve S. Lee*
Affiliation:
University of California, Los Angeles
*
Address correspondence and reprint requests to: Steve S. Lee, Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Box 951563, Los Angeles, CA 90095-1563; E-mail: stevelee@psych.ucla.edu.

Abstract

Although prevailing theories of antisocial behavior (ASB) emphasize distinct developmental trajectories, few studies have explored gene–environment interplay underlying membership in empirically derived trajectories. To improve knowledge about the development of overt (e.g., aggression) and covert (e.g., delinquency) ASB, we tested the association of the 44-base pair promoter polymorphism in the serotonin transporter linked polymorphic region gene (5-HTTLPR), perceived parental support (e.g., closeness and warmth), and their interaction with ASB trajectories derived using latent class growth analysis in 2,558 adolescents followed prospectively into adulthood from the National Longitudinal Study of Adolescent Health. Three distinct trajectories emerged for overt (low desisting, adolescent peak, and late onset) and covert ASB (high stable, low stable, and nonoffending). Controlling for sex, parental support inversely predicted membership in the adolescent-peak overt ASB trajectory (vs. low desisting), but was unrelated to class membership for covert ASB. Furthermore, the 5-HTTLPR genotype significantly moderated the association of parental support on overt ASB trajectory membership. It is interesting that the pattern of Gene × Environment interaction differed by trajectory class: whereas short allele carriers were more sensitive to parental support in predicting the late-onset trajectory, the long/long genotype functioned as a potential “plasticity genotype” for the adolescent-peak trajectory group. We discuss these preliminary findings in the context of the differential susceptibility hypothesis and discuss the need for future studies to integrate gene–environment interplay and prospective longitudinal designs.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguilar, B., Sroufe, L. A., Egeland, B., & Carlson, E. (2000). Distinguishing the early-onset/persistent and adolescence-onset antisocial behavior types: From birth to 16 years. Development and Psychopathology, 12, 109132.Google Scholar
Aliev, F., Latendresse, S. J., Bacanu, S.-A., Neale, M. C., & Dick, D. M. (2014). Testing for measured gene-environment interaction: Problems with the use of cross-product terms and a regression model reparameterization solution. Behavior Genetics, 44, 165181.Google Scholar
Amato, P. R., & Fowler, F. (2002). Parenting practices, child adjustment, and family diversity. Journal of Marriage and Family, 64, 703716.CrossRefGoogle Scholar
Aspinwall, L. G., & Taylor, S. E. (1997). A stitch in time: Self-regulation and proactive coping. Psychological Bulletin, 121, 417436.Google Scholar
Bakermans-Kranenburg, M. J., Van IJzendoorn, M. H., Pijlman, F. T., Mesman, J., & Juffer, F. (2008). Experimental evidence for differential susceptibility: Dopamine D4 receptor polymorphism (DRD4 VNTR) moderates intervention effects on toddlers’ externalizing behavior in a randomized controlled trial. Developmental Psychology, 44, 293300.Google Scholar
Barnes, J. C., Beaver, K. M., & Miller, J. M. (2010). Estimating the effect of gang membership on nonviolent and violent delinquency: A counterfactual analysis. Aggressive Behavior, 36, 437451.Google Scholar
Barnes, J. C., & Jacobs, B. A. (2013). Genetic risk for violent behavior and environmental exposure to disadvantage and violent crime: The case for gene-environment interaction. Journal of Interpersonal Violence, 28, 92120.Google Scholar
Barr, C. S., Newman, T. K., Shannon, C., Parker, C., Dvoskin, R. L., Becker, M. L., et al. (2004). Rearing condition and rh5-HTTLPR interact to influence limbic-hypothalamic-pituitary-adrenal axis response to stress in infant macaques. Biological Psychiatry, 55, 733738.CrossRefGoogle ScholarPubMed
Beevers, C. G., Wells, T. T., Ellis, A. J., & McGeary, J. E. (2009). Association of the serotonin transporter gene promoter region (5-HTTLPR) polymorphism with biased attention for emotional stimuli. Journal of Abnormal Psychology, 118, 670681.Google Scholar
Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2007). For better and for worse: Differential susceptibility to environmental influences. Current Directions in Psychological Science, 16, 300304.Google Scholar
Belsky, J., & Beaver, K. M. (2011). Cumulative-genetic plasticity, parenting and adolescent self-regulation. Journal of Child Psychology and Psychiatry, 52, 619626.CrossRefGoogle ScholarPubMed
Belsky, J., Hsieh, K.-H., & Crnic, K. (1998). Mothering, fathering, and infant negativity as antecedents of boys’ externalizing problems and inhibition at age 3 years: Differential susceptibility to rearing experience? Development and Psychopathology, 10, 301319.Google Scholar
Belsky, J., & Pluess, M. (2009). Beyond diathesis stress: Differential susceptibility to environmental influences. Psychological Bulletin, 135, 885908.Google Scholar
Boden, J. M., Fergusson, D. M., & Horwood, L. J. (2010). Risk factors for conduct disorder and oppositional/defiant disorder: Evidence from a New Zealand birth cohort. Journal of the American Academy of Child & Adolescent Psychiatry, 49, 11251133.Google Scholar
Bollen, K. A., & Curran, P. J. (2006). Latent curve models: A structural equation perspective. Hoboken, NJ: Wiley.Google Scholar
Bongers, I. L., Koot, H. M., Van der Ende, J., & Verhulst, F. C. (2004). Developmental trajectories of externalizing behaviors in childhood and adolescence. Child Development, 75, 15231537.Google Scholar
Brendgen, M. (2012). Genetics and peer relations: A review. Journal of Research on Adolescence, 22, 419437.Google Scholar
Brennan, L. M., & Shaw, D. S. (2013). Revisiting data related to the age of onset and developmental course of female conduct problems. Clinical Child and Family Psychology Review, 16, 3558.Google Scholar
Brody, G. H., Chen, Y.-F., Beach, S. R. H., Philibert, R. A., & Kogan, S. M. (2009). Participation in a family-centered prevention program decreases genetic risk for adolescents’ risky behaviors. Pediatrics, 124, 911917.CrossRefGoogle Scholar
Broidy, L. M., Nagin, D. S., Tremblay, R. E., Bates, J. E., Brame, B., Dodge, K. A., et al. (2003). Developmental trajectories of childhood disruptive behaviors and adolescent delinquency: A six-site, cross-national study. Developmental Psychology, 39, 222245.CrossRefGoogle ScholarPubMed
Brummett, B. H., Boyle, S. H., Siegler, I. C., Kuhn, C. M., Ashley-Koch, A., Jonassaint, C. R., et al. (2008). Effects of environmental stress and gender on associations among symptoms of depression and the serotonin transporter gene linked polymorphic region (5-HTTLPR). Behavior Genetics, 38, 3443.Google Scholar
Burke, J. D., Pardini, D. A., & Loeber, R. (2008). Reciprocal relationships between parenting behavior and disruptive psychopathology from childhood through adolescence. Journal of Abnormal Child Psychology, 36, 679692.Google Scholar
Burt, S. A. (2009). Are there meaningful etiological differences within antisocial behavior? Results of a meta-analysis. Clinical Psychology Review, 29, 163178.Google Scholar
Burt, S. A. (2015). Evidence that the gene–environment interactions underlying youth conduct problems vary across development. Child Development Perspectives, 9, 217221.Google Scholar
Burt, S. A., Donnellan, B. M., Slawinski, B. L., & Klump, K. L. (2015). The phenomenology of non-aggressive antisocial behavior during childhood. Journal of Abnormal Child Psychology. Advance online publication.Google Scholar
Burt, S. A., & Klump, K. L. (2009). The etiological moderation of aggressive and nonaggressive antisocial behavior by age. Twin Research and Human Genetics, 12, 343350.Google Scholar
Burt, S. A., & Klump, K. L. (2012). Etiological distinctions between aggressive and non-aggressive antisocial behavior: Results from a nuclear twin family model. Journal of Abnormal Child Psychology, 40, 10591071.Google Scholar
Burt, S. A., & Mikolajewski, A. J. (2008). Preliminary evidence that specific candidate genes are associated with adolescent-onset antisocial behavior. Aggressive Behavior, 34, 437445.CrossRefGoogle ScholarPubMed
Burt, S. A., & Neiderhiser, J. M. (2009). Aggressive versus nonaggressive antisocial behavior: Distinctive etiological moderation by age. Developmental Psychology, 45, 11641176.Google Scholar
Bynum, M. S., & Kotchick, B. A. (2006). Mother-adolescent relationship quality and autonomy as predictors of psychological adjustment among African American adolescents. Journal of Child and Family Studies, 15, 528541.Google Scholar
Caspi, A., Hariri, A. R., Holmes, A., Uher, R., & Moffitt, T. E. (2010). Genetic sensitivity to the environment: The case of the serotonin transporter gene and its implications for studying complex diseases and traits. American Journal of Psychiatry, 167, 509527.Google Scholar
Caspi, A., McClay, J., Moffitt, T. E., Mill, J., Martin, J., Craig, I. W., et al. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297, 851854.Google Scholar
Champoux, M., Bennett, A., Shannon, C., Higley, J. D., Lesch, K. P., & Suomi, S. J. (2002). Serotonin transporter gene polymorphism, differential early rearing, and behavior in rhesus monkey neonates. Molecular Psychiatry, 7, 10581063.Google Scholar
Chassin, L., Presson, C. C., Rose, J., Sherman, S. J., Davis, M. J., & Gonzalez, J. L. (2005). Parenting style and smoking-specific parenting practices as predictors of adolescent smoking onset. Journal of Pediatric Psychology, 30, 333344.Google Scholar
Chronis, A. M., Lahey, B. B., Pelham, W. E., Williams, S. H., Baumann, B. L., Kipp, H., et al. (2007). Maternal depression and early positive parenting predict future conduct problems in young children with attention-deficit/hyperactivity disorder. Developmental Psychology, 43, 7082.Google Scholar
Chung, I. J., Hill, K. G., Hawkins, J. D., Gilchrist, L. D., & Nagin, D. S. (2002). Childhood predictors of offense trajectories. Journal of Research in Crime and Delinquency, 39, 6090.Google Scholar
Crick, N. R., & Grotpeter, J. K. (1995). Relational aggression, gender and social-psychological adjustment. Child Development, 66, 710722.Google Scholar
Crone, E. A., & Dahl, R. E. (2012). Understanding adolescence as a period of social–affective engagement and goal flexibility. Nature Reviews Neuroscience, 13, 636650.Google Scholar
Davidson, R. J., Putnam, K. M., & Larson, C. L. (2000). Dysfunction in the neural circuitry of emotion regulation: A possible prelude to violence. Science, 289, 591594.CrossRefGoogle ScholarPubMed
Davies, P. T., & Cicchetti, D. (2014). How and why does the 5-HTTLPR gene moderate associations between maternal unresponsiveness and children's disruptive problems? Child Development, 85, 484500.Google Scholar
Daw, J., Shanahan, M., Harris, K. M., Smolen, A., Haberstick, B., & Boardman, J. D. (2013). Genetic sensitivity to peer behaviors: 5HTTLPR, smoking, and alcohol consumption. Journal of Health and Social Behavior, 54, 92108.Google Scholar
Dempfle, A., Scherag, A., Hein, R., Beckmann, L., Chang-Claude, J., & Schäfer, H. (2008). Gene-environment interactions for complex traits: Definitions, methodological requirements and challenges. European Journal of Human Genetics, 16, 11641172.Google Scholar
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39, 138.Google Scholar
Dick, D. M., Latendresse, S. J., Lansford, J. E., Budde, J. P., Goate, A., Dodge, K. A., et al. (2009). Role of GABRA2 in trajectories of externalizing behavior across development and evidence of moderation by parental monitoring. Archives of General Psychiatry, 66, 649657.Google Scholar
Dodge, K. A., Lansford, J. E., Burks, V. S., Bates, J. E., Pettit, G. S., Fontaine, R., et al. (2003). Peer rejection and social information-processing factors in the development of aggressive behavior problems in children. Child Development, 74, 374393.CrossRefGoogle ScholarPubMed
Duncan, L. E., & Keller, M. C. (2011). A critical review of the first 10 years of candidate gene-by-environment interaction research in psychiatry. American Journal of Psychiatry, 168, 10411049.Google Scholar
Duncan, S. C., Duncan, T. E., & Hops, H. (1996). Analysis of longitudinal data within accelerated longitudinal designs. Psychological Methods, 1, 236248.Google Scholar
Duncan, S. C., Duncan, T. E., Strycker, L. A., & Chaumeton, N. R. (2007). A cohort-sequential latent growth model of physical activity from ages 12 to 17 years. Annals of Behavioral Medicine, 33, 8089.Google Scholar
Eley, T. C., Lichtenstein, P., & Moffitt, T. E. (2003). A longitudinal behavioral genetic analysis of the etiology of aggressive and nonaggressive antisocial behavior. Development and Psychopathology, 15, 383402.Google Scholar
Ellis, B. J., Boyce, W. T., Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2011). Differential susceptibility to the environment: An evolutionary–neurodevelopmental theory. Development and Psychopathology, 23, 728.Google Scholar
Evans, S. Z., Simons, L. G., & Simons, R. L. (2014). Factors that influence trajectories of delinquency throughout adolescence. Journal of Youth and Adolescence. Advance online publication.Google ScholarPubMed
Farrington, D. P. (1989). Early predictors of adolescent aggression and adult violence. Violence and Victims, 4, 79100.CrossRefGoogle ScholarPubMed
Farrington, D. P., Ttofi, M. M., & Coid, J. W. (2009). Development of adolescence-limited, late-onset, and persistent offenders from age 8 to age 48. Aggressive Behavior, 35, 150163.Google Scholar
Fergusson, D. M., Horwood, L. J., & Ridder, E. M. (2007). Conduct and attentional problems in childhood and adolescence and later substance use, abuse and dependence: Results of a 25-year longitudinal study. Drug and Alcohol Dependence, 88(Suppl. 1), S14S26.Google Scholar
Fontaine, N., Carbonneau, R., Vitaro, F., Barker, E. D., & Tremblay, R. E. (2009). Research review: A critical review of studies on the developmental trajectories of antisocial behavior in females. Journal of Child Psychology and Psychiatry, 50, 363385.Google Scholar
Foster, E. M., & Jones, D. E. (2005). The high costs of aggression: Public expenditures resulting from conduct disorder. American Journal of Public Health, 95, 17671772.CrossRefGoogle ScholarPubMed
Glenn, A. L. (2011). The other allele: Exploring the long allele of the serotonin transporter gene as a potential risk factor for psychopathy: A review of the parallels in findings. Neuroscience & Biobehavioral Reviews, 35, 612620.Google Scholar
Goldberg, T. E., Kotov, R., Lee, A. T., Gregersen, P. K., Lencz, T., Bromet, E., et al. (2009). The serotonin transporter gene and disease modification in psychosis: Evidence for systematic differences in allelic directionality at the 5-HTTLPR locus. Schizophrenia Research, 111, 103108.Google Scholar
Greenberg, B. D., Tolliver, T. J., Huang, S. J., Li, Q., Bengel, D., & Murphy, D. L. (1999). Genetic variation in the serotonin transporter promoter region affects serotonin uptake in human blood platelets. American Journal of Medical Genetics, 88, 8387.Google Scholar
Haberstick, B. C., Smolen, A., & Hewitt, J. K. (2006). Family-based association test of the 5HTTLPR and aggressive behavior in a general population sample of children. Biological Psychiatry, 59, 836843.Google Scholar
Haga, S. B., Khoury, M. J., & Burke, W. (2003). Genomic profiling to promote a healthy lifestyle: Not ready for prime time. Nature Genetics, 34, 347350.Google Scholar
Hariri, A. R., Drabant, E. M., Munoz, K. E., Kolachana, B. S., Mattay, V. S., Egan, M. F., et al. (2005). A susceptibility gene for affective disorders and the response of the human amygdala. Archives of General Psychiatry, 62, 146152.Google Scholar
Hariri, A. R., & Holmes, A. (2006). Genetics of emotional regulation: The role of the serotonin transporter in neural function. Trends in Cognitive Sciences, 10, 182191.Google Scholar
Harris, K. M., Florey, F., Tabor, J., Bearman, P. S., Jones, J., & Udry, J. R. (2008). The National Longitudinal Study of Adolescent Health: Study design. Retrieved December 8, 2008, from http://www.cpc.unc.edu/projects/addhealth/design Google Scholar
Heils, A., Teufel, A., Petri, S., Stober, G., Riederer, P., Bengel, D., et al. (1996). Allelic variation of human serotonin transporter gene expression. Journal of Neurochemistry, 66, 26212624.Google Scholar
Herts, K. L., McLaughlin, K. A., & Hatzenbuehler, M. L. (2012). Emotion dysregulation as a mechanism linking stress exposure to adolescent aggressive behavior. Journal of Abnormal Child Psychology, 40, 11111122.Google Scholar
Hill, K. G., Hawkins, J. D., Catalano, R. F., Abbott, R. D., & Guo, J. (2005). Family influences on the risk of daily smoking initiation. Journal of Adolescent Health, 37, 202210.Google Scholar
Hoeve, M., Dubas, J., Eichelsheim, V., van der Laan, P., Smeenk, W., & Gerris, J. (2009). The relationships between parenting and delinquency: A meta-analysis. Journal of Abnormal Child Psychology, 37, 749775.Google Scholar
Hunter, D. J. (2005). Gene–environment interactions in human diseases. Nature Reviews Genetics, 6, 287298.Google Scholar
Hutchison, K. E., Stallings, M., McGeary, J., & Bryan, A. (2004). Population stratification in the candidate gene study: Fatal threat or red herring? Psychological Bulletin, 130, 6679.Google Scholar
Jaffee, S. R., Caspi, A., Moffitt, T. E., Dodge, K. A., Rutter, M., Taylor, A., et al. (2005). Nature × Nurture: Genetic vulnerabilities interact with physical maltreatment to promote conduct problems. Development and Psychopathology, 17, 6784.Google Scholar
Jaffee, S. R., & Price, T. S. (2007). Gene–environment correlations: A review of the evidence and implications for prevention of mental illness. Molecular Psychiatry, 12, 432442.Google Scholar
Jung, T., & Wickrama, K. A. S. (2008). An introduction to latent class growth analysis and growth mixture modeling. Social and Personality Psychology Compass, 2, 302317.Google Scholar
Kazdin, A. E. (1992). Overt and covert antisocial behavior: Child and family characteristics among psychiatric inpatient children. Journal of Child and Family Studies, 1, 320.CrossRefGoogle Scholar
Kegel, C. A. T., Bus, A. G., & van IJzendoorn, M. H. (2011). Differential susceptibility in early literacy instruction through computer games: The role of the dopamine D4 receptor gene (DRD4). Mind, Brain, and Education, 5, 7178.Google Scholar
Knafo, A., Israel, S., & Ebstein, R. P. (2011). Heritability of children's prosocial behavior and differential susceptibility to parenting by variation in the dopamine receptor D4 gene. Development and Psychopathology, 23, 5367.Google Scholar
Kraemer, H. C., Yesavage, J. A., Taylor, J. L., & Kupfer, D. (2000). How can we learn about developmental processes from cross-sectional studies, or can we? American Journal of Psychiatry, 157, 163171.Google Scholar
Kretschmer, T., Dijkstra, J. K., Ormel, J., Verhulst, F. C., & Veenstra, R. (2013). Dopamine receptor D4 gene moderates the effect of positive and negative peer experiences on later delinquency: The Tracking Adolescents’ Individual Lives Survey study. Development and Psychopathology, 25(4, Part 1), 11071117.Google Scholar
Krohn, M. D., Gibson, C. L., & Thornberry, T. P. (2013). Under the protective bud the bloom awaits: A review of theory and research on adult-onset and late-blooming offenders. In Gibson, C. L. & Krohn, M. D. (Eds.), Handbook of life-course criminology (pp. 183200). New York: Springer.Google Scholar
Latendresse, S. J., Bates, J. E., Goodnight, J. A., Lansford, J. E., Budde, J. P., Goate, A., et al. (2011). Differential susceptibility to adolescent externalizing trajectories: Examining the interplay between CHRM2 and peer group antisocial behavior. Child Development, 82, 17971814.Google Scholar
Latendresse, S. J., Rose, R. J., Viken, R. J., Pulkkinen, L., Kaprio, J., & Dick, D. M. (2009). Parental socialization and adolescents’ alcohol use behaviors: Predictive disparities in parents’ versus adolescents’ perceptions of the parenting environment. Journal of Clinical Child and Adolescent Psychology, 38, 232244.Google Scholar
Lee, S. S. (2011). Deviant peer affiliation and antisocial behavior: Interaction with monoamine oxidase A (MAOA) genotype. Journal of Abnormal Child Psychology, 39, 321332.Google Scholar
Li, J. J., Berk, M. S., & Lee, S. S. (2013). Differential susceptibility in longitudinal models of gene–environment interaction for adolescent depression. Development and Psychopathology, 25(4, Pt 1), 9911003.Google Scholar
Liao, D.-L., Hong, C.-J., Shih, H.-L., & Tsai, S.-J. (2004). Possible association between serotonin transporter promoter region polymorphism and extremely violent crime in Chinese males. Neuropsychobiology, 50, 284287.Google Scholar
Little, R. J., & Rubin, D. B. (1987). Statistical analysis with missing data. New York: Wiley.Google Scholar
Lo, Y., Mendell, N. R., & Rubin, D. B. (2001). Testing the number of components in a normal mixture. Biometrika, 88, 767778.Google Scholar
Loeber, R., & Schmaling, K. B. (1985). Empirical evidence for overt and covert patterns of antisocial conduct problems: A meta-analysis. Journal of Abnormal Child Psychology, 13, 337353.Google Scholar
Long, H., Liu, B., Hou, B., Wang, C., Li, J., Qin, W., et al. (2013). The long rather than the short allele of 5-HTTLPR predisposes Han Chinese to anxiety and reduced connectivity between prefrontal cortex and amygdala. Neuroscience Bulletin, 29, 415.Google Scholar
Lotrich, D. F. E., Pollock, B. G., & Ferrell, R. E. (2012). Serotonin transporter promoter polymorphism in African Americans. American Journal of Pharmacogenomics, 3, 145147.Google Scholar
Lynam, D. R. (1996). Early identification of chronic offenders: Who is the fledgling psychopath? Psychological Bulletin, 120, 209234.Google Scholar
Marcus, R. F., & Jamison, E. G. (2013). Substance use in adolescence and early adulthood: Which best predicts violence in early adulthood? Journal of Child & Adolescent Substance Abuse, 22, 3857.Google Scholar
Marmorstein, N. R., & Iacono, W. G. (2005). Longitudinal follow-up of adolescents with late-onset antisocial behavior: A pathological yet overlooked group. Journal of the American Academy of Child & Adolescent Psychiatry, 44, 12841291.Google Scholar
Maughan, B., Pickles, A., Rowe, R., Costello, E. J., & Angold, A. (2000). Developmental trajectories of aggressive and non-aggressive conduct problems. Journal of Quantitative Criminology, 16, 199221.Google Scholar
Maughan, B., Rowe, R., Messer, J., Goodman, R., & Meltzer, H. (2004). Conduct disorder and oppositional defiant disorder in a national sample: Developmental epidemiology. Journal of Child Psychology and Psychiatry, 45, 609621.Google Scholar
Merikangas, K. R., & Risch, N. (2003). Will the genomics revolution revolutionize psychiatry? American Journal of Psychiatry, 160, 625635.Google Scholar
Moffitt, T. E. (1993). Adolescence-limited and life-course-persistent antisocial behavior: A developmental taxonomy. Psychological Review, 100, 674701.CrossRefGoogle ScholarPubMed
Moffitt, T. E. (2001). Sex differences in antisocial behaviour: Conduct disorder, delinquency, and violence in the Dunedin longitudinal study. New York: Cambridge University Press.Google Scholar
Moffitt, T. E. (2003). Life-course-persistent and adolescence-limited antisocial behavior: A 10-year research review and a research agenda. In Lahey, B. B., Moffitt, T. E., & Caspi, A. (Eds.), Causes of conduct disorder and juvenile delinquency (pp. 4975). New York: Guilford Press.Google Scholar
Moffitt, T. E., & Caspi, A. (2001). Childhood predictors differentiate life-course persistent and adolescence-limited antisocial pathways among males and females. Development and Psychopathology, 13, 355375.Google Scholar
Moffitt, T. E., Caspi, A., & Rutter, M. (2006). Measured gene-environment interactions in psychopathology concepts, research strategies, and implications for research, intervention, and public understanding of genetics. Perspectives on Psychological Science, 1, 527.Google Scholar
Morris, A. S., Silk, J. S., Steinberg, L., Myers, S. S., & Robinson, L. R. (2007). The role of the family context in the development of emotion regulation. Social Development, 16, 361388.Google Scholar
Munafò, M. R., Durrant, C., Lewis, G., & Flint, J. (2009). Gene x environment interactions at the serotonin transporter locus. Biological Psychiatry, 65, 211219.Google Scholar
Munafò, M. R., & Flint, J. (2009). Replication and heterogeneity in Gene x environment interaction studies. International Journal of Neuropsychopharmacology, 12, 727729.Google Scholar
Muthén, B., & Muthén, L. K. (2000). Integrating person-centered and variable-centered analyses: Growth mixture modeling with latent trajectory classes. Alcoholism: Clinical and Experimental Research, 24, 882891.Google Scholar
Muthén, B., & Shedden, K. (1999). Finite mixture modeling with mixture outcomes using the EM algorithm. Biometrics, 55, 463469.Google Scholar
Muthén, B. O. (2004). Latent variable analysis: Growth mixture modeling and related techniques for longitudinal data. In Kaplan, D. (Ed.), The Sage handbook of quantitative methodology for the social sciences (pp. 345368). Thousand Oaks, CA: Sage.Google Scholar
Muthén, L. K., & Muthén, B. O. (2007). Mplus user's guide (5th ed.) Los Angeles: Author.Google Scholar
Nagin, D. S., Farrington, D. P., & Moffitt, T. E. (1995). Life-course trajectories of different types of offenders. Criminology, 33, 111139.Google Scholar
Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling, 14, 535569.Google Scholar
Odgerel, Z., Talati, A., Hamilton, S. P., Levinson, D. F., & Weissman, M. M. (2013). Genotyping serotonin transporter polymorphisms 5-HTTLPR and rs25531 in European- and African-American subjects from the National Institute of Mental Health's Collaborative Center for Genomic Studies. Translational Psychiatry, 3, e307.Google Scholar
Odgers, C. L., Moffitt, T. E., Broadbent, J. M., Dickson, N., Hancox, R. J., Harrington, H., et al. (2008). Female and male antisocial trajectories: From childhood origins to adult outcomes. Development and Psychopathology, 20, 673716.Google Scholar
Osinsky, R., Reuter, M., Küpper, Y., Schmitz, A., Kozyra, E., Alexander, N., et al. (2008). Variation in the serotonin transporter gene modulates selective attention to threat. Emotion, 8, 584588.Google Scholar
Pasalich, D. S., Dadds, M. R., Hawes, D. J., & Brennan, J. (2011). Do callous-unemotional traits moderate the relative importance of parental coercion versus warmth in child conduct problems? An observational study. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 52, 13081315.Google Scholar
Patkar, A. A., Berrettini, W. H., Hoehe, M., Thornton, C. C., Gottheil, E., Hill, K., et al. (2002). Serotonin transporter polymorphisms and measures of impulsivity, aggression, and sensation seeking among African-American cocaine-dependent individuals. Psychiatry Research, 110, 103115.Google Scholar
Patrick, M. R., Snyder, J., Schrepferman, L. M., & Snyder, J. (2005). The joint contribution of early parental warmth, communication and tracking, and early child conduct problems on monitoring in late childhood. Child Development, 76, 9991014.Google Scholar
Pauli-Pott, U., Friedel, S., Friedl, S., Hinney, A., & Hebebrand, J. (2009). Serotonin transporter gene polymorphism (5-HTTLPR), environmental conditions, and developing negative emotionality and fear in early childhood. Journal of Neural Transmission (Vienna), 116, 503512.Google Scholar
Pepler, D. J., Jiang, D., Craig, W. M., & Connolly, J. (2010). Developmental trajectories of girls’ and boys’ delinquency and associated problems. Journal of Abnormal Child Psychology, 38, 10331044.Google Scholar
Piquero, A. R. (2008). Taking stock of developmental trajectories of criminal activity over the life course. In Liberman, A. M. (Ed.), The long view of crime: A synthesis of longitudinal research (pp. 2378). New York: Springer.Google Scholar
Piquero, A. R., Connell, N. M., Piquero, N. L., Farrington, D. P., & Jennings, W. G. (2013). Does adolescent bullying distinguish between male offending trajectories in late middle age? Journal of Youth and Adolescence, 42, 444453.Google Scholar
Podsakoff, P. M., MacKenzie, S. B., & Podsakoff, N. P. (2012). Sources of method bias in social science research and recommendations on how to control it. Annual Review of Psychology, 63, 539569.CrossRefGoogle ScholarPubMed
Roisman, G. I., Newman, D. A., Fraley, R. C., Haltigan, J. D., Groh, A. M., & Haydon, K. C. (2012). Distinguishing differential susceptibility from diathesis–stress: Recommendations for evaluating interaction effects. Development and Psychopathology, 24, 389409.Google Scholar
Sakai, J. T., Young, S. E., Stallings, M. C., Timberlake, D., Smolen, A., Stetler, G. L., et al. (2006). Case-control and within-family tests for an association between conduct disorder and 5HTTLPR. American Journal of Medical Genetics, 141B, 825832.Google Scholar
Schaeffer, C. M., Petras, H., Ialongo, N., Masyn, K. E., Hubbard, S., Poduska, J., et al. (2006). A comparison of girls’ and boys’ aggressive-disruptive behavior trajectories across elementary school: Prediction to young adult antisocial outcomes. Journal of Consulting and Clinical Psychology, 74, 500510.Google Scholar
Schwandt, M. L., Lindell, S. G., Sjöberg, R. L., Chisholm, K. L., Higley, J. D., Suomi, S. J., et al. (2010). Gene-environment interactions and response to social intrusion in male and female rhesus macaques. Biological Psychiatry, 67, 323330.Google Scholar
Sessa, F. M., Avenevoli, S., Steinberg, L., & Morris, A. S. (2001). Correspondence among informants on parenting: Preschool children, mothers, and observers. Journal of Family Psychology, 15, 5368.Google Scholar
Shaw, D. S., Hyde, L. W., & Brennan, L. M. (2012). Early predictors of boys’ antisocial trajectories. Development and Psychopathology, 24, 871888.Google Scholar
Silvers, J. A., McRae, K., Gabrieli, J. D., Gross, J. J., Remy, K. A., & Ochsner, K. N. (2012). Age-related differences in emotional reactivity, regulation, and rejection sensitivity in adolescence. Emotion, 12, 12351247.Google Scholar
Silverthorn, P., & Frick, P. J. (1999). Developmental pathways to antisocial behavior: The delayed-onset pathway in girls. Development and Psychopathology, 11, 101126.Google Scholar
Silverthorn, P., Frick, P. J., & Reynolds, R. (2001). Timing of onset and correlates of severe conduct problems in adjudicated girls and boys. Journal of Psychopathology and Behavioral Assessment, 23, 171181.Google Scholar
Simons, R. L., Lei, M. K., Beach, S. R. H., Brody, G. H., Philibert, R. A., & Gibbons, F. X. (2011). Social environment, genes, and aggression evidence supporting the differential susceptibility perspective. American Sociological Review, 76, 883912.Google Scholar
Smolen, A., Whitsel, E. A., Tabor, J., Killeya-Jones, L. A., Cuthbertson, C. C., Hussey, J. M., et al. (2013). Add Health wave IV documentation: Candidate genes. Chapel Hill, NC: University of North Carolina at Chapel Hill, Carolina Population Center.Google Scholar
Somerville, L. H., Jones, R. M., & Casey, B. J. (2010). A time of change: Behavioral and neural correlates of adolescent sensitivity to appetitive and aversive environmental cues. Brain and Cognition, 72, 124133.Google Scholar
Stanger, C., Achenbach, T. M., & Verhulst, F. C. (1997). Accelerated longitudinal comparisons of aggressive versus delinquent syndromes. Development and Psychopathology, 9, 4358.Google Scholar
Steinberg, L. (2001). We know some things: Parent–adolescent relationships in retrospect and prospect. Journal of Research on Adolescence, 11, 119.Google Scholar
Sturaro, C., van Lier, P. A. C., Cuijpers, P., & Koot, H. M. (2011). The role of peer relationships in the development of early school-age externalizing problems. Child Development, 82, 758765.Google Scholar
Taylor, K. A., Sullivan, T. N., & Kliewer, W. (2013). A longitudinal path analysis of peer victimization, threat appraisals to the self, and aggression, anxiety, and depression among urban African American adolescents. Journal of Youth and Adolescence, 42, 178189.Google Scholar
Thornberry, T. P., Lizotte, A. J., Krohn, M. D., Farnworth, M., & Jang, S. J. (1994). Delinquent peers, beliefs, and delinquent behavior: A longitudinal test of interactional theory. Criminology, 32, 4783.Google Scholar
Tilson, E. C., McBride, C. M., Lipkus, I. M., & Catalano, R. F. (2004). Testing the interaction between parent-child relationship factors and parent smoking to predict youth smoking. Journal of Adolescent Health, 35, 182189.Google Scholar
Tompsett, C. J., & Toro, P. A. (2010). Predicting overt and covert antisocial behaviors: Parents, peers, and homelessness. Journal of Community Psychology, 38, 469485.Google Scholar
Uchino, B. N. (2009). Understanding the links between social support and physical health: A life-span perspective with emphasis on the separability of perceived and received support. Perspectives on Psychological Science, 4, 236255.Google Scholar
Uher, R. (2008). The implications of gene-environment interactions in depression: Will cause inform cure? Molecular Psychiatry, 13, 10701078.Google Scholar
van den Oord, E. J. (1999). Method to detect genotype-environment interactions for quantitative trait loci in association studies. American Journal of Epidemiology, 150, 11791187.CrossRefGoogle ScholarPubMed
van IJzendoorn, M. H., & Bakermans-Kranenburg, M. J. (2012). Differential susceptibility experiments: Going beyond correlational evidence: Comment on beyond mental health, differential susceptibility articles. Developmental Psychology, 48, 769774.Google Scholar
van IJzendoorn, M. H., Belsky, J., & Bakermans-Kranenburg, M. J. (2012). Serotonin transporter genotype 5HTTLPR as a marker of differential susceptibility? A meta-analysis of child and adolescent gene-by-environment studies. Translational Psychiatry, 2, e147.Google Scholar
Verona, E., Joiner, T. E., Johnson, F., & Bender, T. W. (2006). Gender-specific gene-environment interactions on laboratory-assessed aggression. Biological Psychology, 71, 3341.Google Scholar
Wankerl, M., Miller, R., Kirschbaum, C., Hennig, J., Stalder, T., & Alexander, N. (2014). Effects of genetic and early environmental risk factors for depression on serotonin transporter expression and methylation profiles. Translational Psychiatry, 4, e402.Google Scholar
White, H. R., Bates, M. E., & Buyske, S. (2001). Adolescence-limited versus persistent delinquency: Extending Moffitt's hypothesis into adulthood. Journal of Abnormal Psychology, 110, 600609.Google Scholar
Wiesner, M., & Capaldi, D. M. (2003). Relations of childhood and adolescent factors to offending trajectories of young men. Journal of Research in Crime and Delinquency, 40, 231262.Google Scholar
Williams, R. B., Marchuk, D. A., Gadde, K. M., Barefoot, J. C., Grichnik, K., Helms, M. J., et al. (2003). Serotonin-related gene polymorphisms and central nervous system serotonin function. Neuropsychopharmacology, 28, 533541.Google Scholar
Willoughby, M., Kupersmidt, J., & Bryant, D. (2001). Overt and covert dimensions of antisocial behavior in early childhood. Journal of Abnormal Child Psychology, 29, 177187.Google Scholar
Wong, M. Y., Day, N. E., Luan, J. A., Chan, K. P., & Wareham, N. J. (2003). The detection of gene–environment interaction for continuous traits: Would we deal with measurement error by bigger studies or better measurement? International Journal of Epidemiology, 32, 5157.Google Scholar
Yap, M. B. H., Allen, N. B., & Ladouceur, C. D. (2008). Maternal socialization of positive affect: The impact of invalidation on adolescent emotion regulation and depressive symptomatology. Child Development, 79, 14151431.Google Scholar
Zheng, Y., & Cleveland, H. H. (2013). Identifying gender-specific developmental trajectories of nonviolent and violent delinquency from adolescence to young adulthood. Journal of Adolescence, 36, 371381.Google Scholar