Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-19T14:37:13.698Z Has data issue: false hasContentIssue false

Dynamic changes in postnatal growth predict adolescent mental health problems in survivors of extremely low birth weight (ELBW)

Published online by Cambridge University Press:  20 June 2023

Karen J. Mathewson*
Affiliation:
Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
Christina A. Brook
Affiliation:
Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
Saroj Saigal
Affiliation:
Department of Pediatrics, McMaster University, Hamilton, ON, Canada
Ryan J. Van Lieshout
Affiliation:
Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
Louis A. Schmidt
Affiliation:
Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
*
Corresponding author: Karen J. Mathewson; Email: mathewkj@mcmaster.ca

Abstract

Although individuals born at extremely low birth weight (ELBW; ≤1000 g) are known to be at greater risk for mental health problems than individuals born at normal birth weight (NBW; ≥2500 g), contributions of postnatal growth to these relations have not been fully explored. We compared individual differences in the Ponderal Index [(PI; weight(kg)/height(m3)] and head circumference (HC) in predicting internalizing and externalizing behaviors in childhood and adolescence in a cohort of ELBW survivors (N = 137) prospectively followed since birth. Baseline models indicated that infants who were born thinner or with smaller HC showed greater PI or HC growth in the first 3 years. Latent difference score (LDS) models showed that compensatory HC growth in the first year (ΔHC = 20.72 cm), controlled for birth HC, predicted ADHD behaviors in adolescence in those born with smaller HC. LDS models also indicated that the PI increased within the first year (ΔPI = 1.568) but decreased overall between birth and age 3 years (net ΔPI = −4.597). Modeling further showed that larger increases in the PI in the first year and smaller net decreases over 3 years predicted more internalizing behaviors in adolescence. These findings suggest early growth patterns prioritizing weight over height may have negative effects on later mental health in ELBW survivors, consistent with developmental programming theories.

Type
Regular Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

KJM and CAB contributed equally to the manuscript.

References

Aarnoudse-Moens, C. S. H., Weisglas-Kuperus, N., van Goudoever, J. B., & Oosterlaan, J. (2009). Meta-analysis of neurobehavioral outcomes in very preterm and/or very low birth weight children. Pediatrics, 124(2), 717728. https://doi.org/10.1542/peds.2008-2816 CrossRefGoogle ScholarPubMed
Achenbach, T. M. (1991). Manual for the child behavior checklist/4-18 and 1991 profile. Burlington, VT: University of Vermont, Department of Psychiatry.Google Scholar
Achenbach, T. M., & Edelbrock, C. (1983). Manual for the child behavior checklist. Burlington, VT: University of Vermont, Department of Psychiatry.Google Scholar
Achenbach, T. M., Ivanova, M. Y., Rescorla, L. A., Turner, L. V., & Althoff, R. R. (2016). Internalizing/externalizing problems: Review and recommendations for clinical and research applications. Journal of the American Academy of Child and Adolescent Psychiatry, 55(8), 647656. https://doi.org/10.1016/j.jaac.2016.05.012 CrossRefGoogle ScholarPubMed
Achenbach, T. M., & Rescorla, L. A. (2001). Manual for the ASEBA preschool forms and profiles, vol. 30. Burlington, VT: University of Vermont, Research Center for Children, Youth, & Families.Google Scholar
Anderson, P. J., de Miranda, D. M., Albuquerque, M. R., Indredavik, M. S., Evensen, K. A. I., Van Lieshout, R., Saigal, S., Taylor, H. G., Raikkonen, K., Kajantie, E., Marlow, N., Johnson, S., Woodward, L. J., Austin, N., Nosarti, C., Jaekel, J., Wolke, D., Cheong, J. L., Burnett, A., … Doyle, L. W. (2021). Psychiatric disorders in individuals born very preterm/very low-birth weight: An individual participant data (IPD) meta-analysis. EClinicalMedicine, 42, 101216101216. https://doi.org/10.1016/j.eclinm.2021.101216 CrossRefGoogle ScholarPubMed
Barker, D. J. (2012). Developmental origins of chronic disease. Public Health, 126(3), 185189. https://doi.org/10.1016/j.puhe.2011.11.014 CrossRefGoogle ScholarPubMed
Barker, D. J., Forsén, T., Uutela, A., Osmond, C., & Eriksson, J. G. (2001). Size at birth and resilience to effects of poor living conditions in adult life: Longitudinal study. BMJ, 323(7324), 12731276. https://doi.org/10.1136/bmj.323.7324.1273 CrossRefGoogle ScholarPubMed
Barker, D. J., Osmond, C., Kajantie, E., & Eriksson, J. G. (2009). Growth and chronic disease: Findings in the Helsinki Birth Cohort. Annals of Human Biology, 36(5), 445458. https://doi.org/10.1080/03014460902980295 CrossRefGoogle ScholarPubMed
Bartholomeusz, H. H., Courchesne, E., & Karns, C. M. (2002). Relationship between head circumference and brain volume in healthy normal toddlers, children, and adults. Neuropediatrics, 33(5), 239241. https://doi.org/10.1055/s-2002-36735 CrossRefGoogle ScholarPubMed
Belfort, M. B., & Ramel, S. E. (2019). NICU diet, physical growth and nutrient accretion, and preterm infant brain development. Neoreviews, 20(7), e385e396. https://doi.org/10.1542/neo.20-7-e385 CrossRefGoogle ScholarPubMed
Belfort, M. B., Rifas-Shiman, S. L., Sullivan, T., Collins, C. T., McPhee, A. J., Ryan, P., Kleinman, K. P., Gillman, M. W., Gibson, R. A., & Makrides, M. (2011). Infant growth before and after term: Effects on neurodevelopment in preterm infants. Pediatrics, 128(4), e899e906. https://doi.org/10.1542/peds.2011-0282 CrossRefGoogle ScholarPubMed
Blencowe, H., Krasevec, J., de Onis, M, Black, R. E., An, X., Stevens, G. A., Borghi, E., Hayashi, C., Estevez, D., Cegolon, L., Shiekh, S., Ponce Hardy, V., Lawn, J. E., & Cousens, S. (2019). National, regional, and worldwide estimates of low birthweight in 2015, with trends from 2000: a systematic analysis. Lancet Global Health, 7(7), e849e860. https://doi.org/10.1016/S2214-109X(18)30565-5 CrossRefGoogle ScholarPubMed
Boyle, M. H., Miskovic, V., Van Lieshout, R., Duncan, L., Schmidt, L. A., Hoult, L., Paneth, N., & Saigal, S. (2011). Psychopathology in young adults born at extremely low birth weight. Psychological Medicine, 41(8), 17631774. https://doi.org/10.1017/S0033291710002357 CrossRefGoogle ScholarPubMed
Boyle, M. H., Offord, D. R., Racine, Y., Fleming, J. E., Szatmari, P., & Sanford, M. (1993). Evaluation of the revised Ontario child health study scales. Journal of Child Psychology and Psychiatry, 34(2), 189213. https://doi.org/10.1111/j.1469-7610.1993.tb00979.x CrossRefGoogle ScholarPubMed
Brown, A. S., van Os, J., Driessens, C., Hoek, H. W., & Susser, E. S. (2000). Further evidence of relation between prenatal famine and major affective disorder. American Journal of Psychiatry, 157(2), 190195. https://doi.org/10.1176/appi.ajp.157.2.190 CrossRefGoogle ScholarPubMed
Burton, R. F. (2007). Why is the body mass index calculated as mass/height2, not as mass/height3? Annals of Human Biology, 34(6), 656663. https://doi.org/10.1080/03014460701732962 CrossRefGoogle Scholar
Byrne, B. M. (2010). Structural equation modeling with AMOS: Basic concepts, applications, and programming. Lawrence Erlbaum Associates, Mahwah.Google Scholar
Casey, P. H., Whiteside-Mansell, L., Barrett, K., Bradley, R. H., & Gargus, R. (2006). Impact of prenatal and/or postnatal growth problems in low birth weight preterm infants on school-age outcomes: An 8-year longitudinal evaluation. Pediatrics, 118(9), 10781086. https://doi.org/10.1542/peds.2006-0361 CrossRefGoogle ScholarPubMed
Center for Disease Control. Growth Charts - Percentile Data Files with LMS Values (cdc.gov) (2000, May, https://www.cdc.gov/growthcharts/percentile_data_files.htm, Retrieved June 10, 2022.Google Scholar
Cheung, Y. B., Khoo, K. S., Karlberg, J., & Machin, D. (2002). Association between psychological symptoms in adults and growth in early life: Longitudinal follow up study. British Medical Journal, 325(7367), 749. https://doi.org/10.1136/bmj.325.7367.749 CrossRefGoogle ScholarPubMed
Cole, T. J., Bellizzi, M. C., Flegal, K. M., & Dietz, W. H. (2000). Establishing a standard definition for child overweight and obesity worldwide: International survey. British Medical Journal, 320(7244), 12401243. https://doi.org/10.1136/bmj.320.7244.1240 CrossRefGoogle ScholarPubMed
Cooke, R. J. (2010). Catch-up growth: Implications for the preterm and term infant. European Journal of Clinical Nutrition, 64(1), S8S10. https://doi.org/10.1038/ejcn.2010.40 CrossRefGoogle ScholarPubMed
Cooke, R. J., Ainsworth, S. B., & Fenton, A. C. (2004). Postnatal growth retardation: A universal problem in preterm infants. Archives of Disease in Childhood-Fetal and Neonatal Edition, 89(5), F428F430. https://doi.org/10.1136/adc.2001.004044 CrossRefGoogle ScholarPubMed
Costello, E. J., Worthman, C., Erkanli, A., & Angold, A. (2007). Prediction from low birth weight to female adolescent depression: A test of competing hypotheses. Archives of General Psychiatry, 64(3), 338344. https://doi.org/10.1001/archpsyc.64.3.338 CrossRefGoogle ScholarPubMed
Cowen, P. J., & Browning, M. (2015). What has serotonin to do with depression? World Psychiatry, 14(2), 158160. https://doi.org/10.1002/wps.20229 CrossRefGoogle Scholar
Davies, S. J. C., Hood, S. D., Argyropoulos, S. V., Morris, K., Bell, C., Witchel, H. J., Jackson, P. R., Nutt, D. J., & Potokar, J. P. (2006). Depleting serotonin enhances both cardiovascular and psychological stress reactivity in recovered patients with anxiety disorders. Journal of Clinical Psychopharmacology, 26(4), 414418. https://doi.org/10.1097/01.jcp.0000227704.79740.c0 CrossRefGoogle ScholarPubMed
de Beurs, E., Boehnke, J. R., & Fried, E. I. (2022). Common measures or common metrics? A plea to harmonize measurement results. Clinical Psychology and Psychotherapy, 29(5), 17551767. https://doi.org/10.1002/cpp.2742 CrossRefGoogle ScholarPubMed
de Mola, C. L., De França, G. V. A., de Avila Quevedo, L., & Horta, B. L. (2014). Low birth weight, preterm birth and small for gestational age association with adult depression: Systematic review and meta-analysis. British Journal of Psychiatry, 205(5), 340347. https://doi.org/10.1192/bjp.bp.113.139014 CrossRefGoogle Scholar
Diggle, P., & Kenward, M. G. (1994). Informative drop-out in longitudinal data analysis. Journal of the Royal Statistical Society: Series C (Applied Statistics), 43(1), 4973. https://doi.org/10.2307/2986113 Google Scholar
Dombrowski, M. P., Berry, S. M., Johnson, M. P., Saleh, A. A. A., & Sokol, R. J. (1994). Birth weight-length ratios, ponderal indexes, placental weights, and birth weight-placenta ratios in a large population. Archives of Pediatrics & Adolescent Medicine, 148(5), 508512. https://doi.org/10.1001/archpedi.1994.02170050066012 CrossRefGoogle ScholarPubMed
Drvaric, L. A., Van Lieshout, R. J., & Schmidt, L. A. (2013). Linking early adversity, emotion dysregulation, and psychopathology: The case of extremely low birth weight infants. Child Development Research, 2013, 19. https://doi.org/10.1155/2013/203061 2013.CrossRefGoogle Scholar
du V. Florey, C., & C (1970). The use and interpretation of ponderal index and other weight-height ratios in epidemiological studies. Journal of Chronic Diseases, 23(2), 93103. https://doi.org/10.1016/0021-9681(70)90068-8 CrossRefGoogle Scholar
Ehrenkranz, R. A., Younes, N., Lemons, J. A., Fanaroff, A. A., Donovan, E. F., Wright, L. L., Katsikiotis, V., Tyson, J. E., Oh, W., Shankaran, S., Bauer, C. R., Korones, S. B., Stoll, B. J., Stevenson, D. K., Papile, L-A. (1999). Longitudinal growth of hospitalized very low birth weight infants. Pediatrics, 104(2), 280289. https://doi.org/10.1542/peds.104.2.280 CrossRefGoogle ScholarPubMed
Elgen, S. K., Leversen, K. T., Grundt, J. H., Hurum, J., Sundby, A. B., Elgen, I. B., & Markestad, T. (2012). Mental health at 5 years among children born extremely preterm: A national population-based study. European Child & Adolescent Psychiatry, 21(10), 583589. https://doi.org/10.1007/s00787-012-0298-1 CrossRefGoogle ScholarPubMed
Embleton, N. D., & van den Akker, C. H. (2019). Protein intakes to optimize outcomes for preterm infants. Seminars in Perinatology, 43(7), 151154. https://doi.org/10.1053/j.semperi.2019.06.002 CrossRefGoogle ScholarPubMed
Embleton, N. E., Pang, N., & Cooke, R. J. (2001). Postnatal malnutrition and growth retardation: An inevitable consequence of current recommendations in preterm infants? Pediatrics, 107(2), 270273. https://doi.org/10.1542/peds.107.2.270 CrossRefGoogle ScholarPubMed
Enders, C. K. (2013). Dealing with missing data in developmental research. Child Development Perspectives, 7(1), 2731. https://doi.org/10.1111/cdep.12008 CrossRefGoogle Scholar
Euser, A. M., De Wit, C. C., Finken, M. J. J., Rijken, M., & Wit, J. M. (2008). Growth of preterm born children. Hormone Research in Paediatrics, 70(6), 319328. https://doi.org/10.1159/000161862 CrossRefGoogle ScholarPubMed
Faa, G., Manchia, M., Pintus, R., Gerosa, C., Marcialis, M. A., & Fanos, V. (2016). Fetal programming of neuropsychiatric disorders. Birth Defects Research Part C: Embryo Today: Reviews, 108(3), 207223. https://doi.org/10.1002/bdrc.21139 CrossRefGoogle ScholarPubMed
Franz, A. P., Bolat, G. U., Bolat, H., Matijasevich, A., Santos, Iá S., Silveira, R. C., Procianoy, R. S., Rohde, L. A., Moreira-Maia, C. R.(2018). Attention-deficit/hyperactivity disorder and very preterm/very low birth weight: A meta-analysis. Pediatrics, 141(1), e20171645. https://doi.org/10.1542/peds.2017-1645 CrossRefGoogle ScholarPubMed
Gale, C. R., & Martyn, C. N. (2004). Birth weight and later risk of depression in a national birth cohort. British Journal of Psychiatry, 184(1), 2833. https://doi.org/10.1192/bjp.184.1.28 CrossRefGoogle Scholar
Galjaard, S., Ameye, L., Lees, C., Pexsters, A., Bourne, T., Timmerman, D., & Devlieger, R. (2019). Sex differences in fetal growth and immediate birth outcomes in a low-risk caucasian population. Biology of Sex Differences, 10(1), 48. https://doi.org/10.1186/s13293-019-0261-7 CrossRefGoogle Scholar
Gluckman, P. D., Hanson, M. A., Cooper, C., & Thornburg, K. L. (2008). Effect of in utero and early-life conditions on adult health and disease. New England Journal of Medicine, 359(1), 6173. https://doi.org/10.1056/NEJMra0708473 CrossRefGoogle ScholarPubMed
Goldenberg, R. L., Cutter, G., Hoffman, H., Foster, J., Nelson, K., & Hauth, J. (1990). Intrauterine growth retardation: Standards for diagnosis. International Journal of Gynecology and Obstetrics, 31(4), 389389. https://doi.org/10.1016/0020-7292(90)90956-L CrossRefGoogle Scholar
Gotlib, I. H., Joormann, J., Minor, K. L., & Hallmayer, J. (2008). HPA Axis Reactivity: A mechanism underlying the associations among 5-HTTLPR, stress, and depression. Biological Psychiatry, 63(9), 847851. https://doi.org/10.1016/j.biopsych.2007.10.008 CrossRefGoogle ScholarPubMed
Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual Review of Psychology, 60(1), 549576. https://doi.org/10.1146/annurev.psych.58.110405.085530 CrossRefGoogle ScholarPubMed
Guellec, I., Lapillonne, A., Marret, S., Picaud, J. C., Mitanchez, D., Charkaluk, M. L., Fresson, J., Arnaud, C., Flamand, C., Cambonie, G., Kaminski, M., Roze, J-C., Ancel, P-Y., Larroque, B., Ancel, P. Y., Blondel, B., Bréart, G., Dehan, M., Garel, M., …, & Voyer, M. (2016). Effect of intra-and extrauterine growth on long-term neurologic outcomes of very preterm infants. Journal of Pediatrics, 175, 9399. https://doi.org/10.1016/j.jpeds.2016.05.027 CrossRefGoogle ScholarPubMed
Gunnar, M., & Quevedo, K. (2007). The neurobiology of stress and development. Annual Review of Psychology, 58(1), 145173. https://doi.org/10.1146/annurev.psych.58.110405.085605 CrossRefGoogle ScholarPubMed
Hack, M., Schluchter, M., Margevicius, S., Andreias, L., Taylor, H. G., & Cuttler, L. (2014). Trajectory and correlates of growth of extremely-low-birth-weight adolescents. Pediatric Research, 75(2), 358366. https://doi.org/10.1038/pr.2013.209 CrossRefGoogle ScholarPubMed
Hack, M., Youngstrom, E. A., Cartar, L., Schluchter, M., Taylor, H. G., Flannery, D., Klein, N., Borawski, E. (2004). Behavioral outcomes and evidence of psychopathology among very low birth weight infants at age 20 years. Pediatrics, 114(4), 932940. https://doi.org/10.1542/peds.2003-1017-L CrossRefGoogle ScholarPubMed
Hadaya, L., & Nosarti, C. (2020). The neurobiological correlates of cognitive outcomes in adolescence and adulthood following very preterm birth. Seminars in Fetal & Neonatal Medicine, 25(3), 101117101117. https://doi.org/10.1016/j.siny.2020.101117 CrossRefGoogle ScholarPubMed
Hartman, S., & Belsky, J. (2021). Prenatal programming of postnatal plasticity. In Wazana, A., Székely, E., & Oberlander, T. (Eds.), Prenatal stress and child development (pp. 349385). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-030-60159-1 CrossRefGoogle Scholar
Hedderich, D. M., Bäuml, J. G., Berndt, M. T., Menegaux, A., Scheef, L., Daamen, M., Zimmer, C., Bartmann, P., Boecker, H., Wolke, D., Gaser, C., Sorg, C. (2019). Aberrant gyrification contributes to the link between gestational age and adult IQ after premature birth. Brain (London, England, 142(5), 12551269. https://doi.org/10.1093/brain/awz071 Google Scholar
Heinonen, K., Räikkönen, K., Pesonen, A-K., Andersson, S., Kajantie, E., Eriksson, J. G., Vartia, T., Wolke, D., Lano, A. (2011). Trajectories of growth and symptoms of attention-deficit/hyperactivity disorder in children: A longitudinal study. BMC Pediatrics, 11(1), 84. https://doi.org/10.1186/1471-2431-11-84 CrossRefGoogle ScholarPubMed
Heird, W. C. (1999). The importance of early nutritional management of low-birthweight infants. Pediatric Reviews, 20(9), e43e44. https://doi.org/10.1542/pir.20-9-e43 CrossRefGoogle ScholarPubMed
Hellström, A., Sigurdsson, J., Löfqvist, C., Hellgren, G., & Kistner, A. (2020). The IGF system and longitudinal growth in preterm infants in relation to gestational age, birth weight and gender. Growth Hormone & IGF Research, 51, 4657. https://doi.org/10.1016/j.ghir.2020.02.002 CrossRefGoogle ScholarPubMed
Hintz, S., Kendrick, D., Vohr, B., Kenneth Poole, W., Higgins, R., & the NICHD Neonatal Research Network (2006). Gender differences in neurodevelopmental outcomes among extremely preterm, extremely-low-birthweight infants. Acta Paediatrica, 95(10), 12391248. https://doi.org/10.1080/08035250600599727 CrossRefGoogle ScholarPubMed
Hollingshead, A. B. (1969). Two-factor index of social position. New Haven, CT: Yale University Press.Google Scholar
Hooper, D., Coughlan, J., & Mullen, M. (2008). Evaluating model fit: a synthesis of the structural equation modeling literature. In 7 th European Conference on Research Methodology for Business and Management Studies (pp. 195-200).Google Scholar
Horbar, J. D., Ehrenkranz, R. A., Badger, G. J., Edwards, E. M., Morrow, K. A., Soll, R. F., Buzas, J. S., Bertino, E., Gagliardi, L., Bellù, R. (2015). Weight growth velocity and postnatal growth failure in infants 501 to 1500 grams: 2000-2013. Pediatrics, 136(1), e84e92. https://doi.org/10.1542/peds.2015-0129 CrossRefGoogle ScholarPubMed
Howe, L. D., Tilling, K., Benfield, L., Logue, J., Sattar, N., Ness, A. R., Smith, G. D., Lawlor, D. A., Hernandez, A. V. (2010). Changes in ponderal index and body mass index across childhood and their associations with fat mass and cardiovascular risk factors at age 15. PloS One, 5(12), e15186. https://doi.org/10.1371/journal.pone.0015186 CrossRefGoogle ScholarPubMed
Hsiao, C. C., Tsai, M. L., Chen, C. C., & Lin, H. C. (2014). Early optimal nutrition improves neurodevelopmental outcomes for very preterm infants. Nutrition Reviews, 72(8), 532540. https://doi.org/10.1111/nure.12110 CrossRefGoogle ScholarPubMed
Huang, C., Phillips, M. R., Zhang, Y., Zhang, J., Shi, Q., Song, Z., Ding, Z., Pang, S., Martorell, R. (2013). Malnutrition in early life and adult mental health: Evidence from a natural experiment. Social Science & Medicine, 97, 259266. https://doi.org/10.1016/j.socscimed.2012.09.051 CrossRefGoogle ScholarPubMed
Johnson, S., Hollis, C., Kochhar, P., Hennessy, E., Wolke, D., & Marlow, N. (2010). Psychiatric disorders in extremely preterm children: Longitudinal finding at age 11 years in the EPICure Study. Journal of the American Academy of Child and Adolescent Psychiatry, 49(5), 453463e1. https://doi.org/10.1097/00004583-201005000-00006 Google ScholarPubMed
Johnson, S., & Marlow, N. (2014). Growing up after extremely preterm birth: Lifespan mental health outcomes. Seminars in Fetal & Neonatal Medicine, 19(2), 97104. https://doi.org/10.1016/j.siny.2013.11.004 CrossRefGoogle ScholarPubMed
Kajantie, E., Feldt, K., Räikkönen, K., Phillips, D. I. W., Osmond, C., Heinonen, K., Pesonen, A-K., Andersson, S., Barker, D. J. P., Eriksson, J. G. (2007). Body size at birth predicts hypothalamic-pituitary-adrenal axis response to psychosocial stress at age 60 to 70 years. Journal of Clinical Endocrinology & Metabolism, 92(11), 40944100. https://doi.org/10.1210/jc.2007-1539 CrossRefGoogle ScholarPubMed
Kessler, R. C., Amminger, G. P., Aguilar-Gaxiola, S., Alonso, J., Lee, S., & Üstün, T. B. (2007). Age of onset of mental disorders: A review of recent literature. Current Opinion in Psychiatry, 20(4), 359364. https://doi.org/10.1097/YCO.0b013e32816ebc8c CrossRefGoogle ScholarPubMed
Klopack, E. T., & Wickrama, K. (2020). Modeling latent change score analysis and extensions in Mplus: A practical guide for researchers. Structural Equation Modeling: A Multidisciplinary Journal, 27(1), 97110. https://doi.org/10.1080/10705511.2018.1562929 CrossRefGoogle ScholarPubMed
Kobylski, T. P. (1988). Diagnostic and statistical manual of mental disorders, Third Edition, Revised. Psychosomatics, 29(1), 133134. https://doi.org/10.1016/S0033-3182(88)72438-X CrossRefGoogle Scholar
Kojic, L., Dyck, H. R., Gu, Q., Douglas, M. R., Matsubara, J., & Cynader, S. M. (2000). Columnar distribution of serotonin-dependent plasticity within kitten striate cortex. Proceedings of the National Academy of Sciences USA, 97(4), 18411844. https://doi.org/10.1073/pnas.97.4.1841 CrossRefGoogle ScholarPubMed
Kramer, M. S., Platt, R. W., Wen, S. W., Joseph, K. S., Allen, A., Abrahamowicz, M., Blondel, B., Bréart, G., for the Fetal/Infant Health Study Group of the Canadian Perinatal Surveillance System (2001). A new and improved population-based Canadian reference for birth weight for gestational age. Pediatrics, 108(2), e35e35. https://doi.org/10.1542/peds.108.2.e35 CrossRefGoogle ScholarPubMed
Kuczmarski, R. J., Ogden, C. L., Grummer-Strawn, L. M., Flegal, K. M., Guo, S. S., Wei, R., Mei, Z., Curtin, L. R., Roche, A. F., & Johnson, C. L. (2000). CDC growth charts: United States. Advance Data from Vital and Health Statistics of the National Center for Health Statistics, 314, 127.Google Scholar
Lahti, J., Räikkönen, K., Kajantie, E., Heinonen, K., Pesonen, A-K., Järvenpää, A-L., Strandberg, T. (2006). Small body size at birth and behavioural symptoms of ADHD in children aged five to six years. Journal of Child Psychology and Psychiatry, 47(11), 11671174. https://doi.org/10.1111/j.1469-7610.2006.01661.x CrossRefGoogle ScholarPubMed
Lahti, J., Räikkönen, K., Pesonen, A-K., Heinonen, K., Kajantie, E., Forsén, T., Osmond, C., Barker, D. J. P., Eriksson, J. G. (2010). Prenatal growth, postnatal growth and trait anxiety in late adulthood-the Helsinki Birth Cohort Study. Acta Psychiatrica Scandinavica, 121(3), 227235. https://doi.org/10.1111/j.1600-0447.2009.01432.x CrossRefGoogle ScholarPubMed
Latal-Hajnal, B., von Siebenthal, K., Kovari, H., Bucher, H. U., & Largo, R. H. (2003). Postnatal growth in VLBW infants: Significant association with neurodevelopmental outcome. Journal of Pediatrics, 143(2), 163170. https://doi.org/10.1067/S0022-3476(03)00243-9 CrossRefGoogle ScholarPubMed
Lindström, K., Lindblad, F., & Hjern, A. (2011). Preterm birth and attention-deficit/hyperactivity disorder in schoolchildren. Pediatrics, 127(5), 858865. https://doi.org/10.1542/peds.2010-1279 CrossRefGoogle ScholarPubMed
Loÿs, C.-M., Maucort-Boulch, D., Guy, B., Putet, G., Picaud, J.-C., & Haÿs, S. (2013). Extremely low birthweight infants: How neonatal intensive care unit teams can reduce postnatal malnutrition and prevent growth retardation. Acta Paediatrica, 102(3), 242248. https://doi.org/10.1111/apa.12092 CrossRefGoogle ScholarPubMed
Manjarrez, G., Cisneros, I., Herrera, R., Vazquez, F., Robles, A., & Hernandez, J. (2005). Prenatal impairment of brain serotonergic transmission in infants. Journal of Pediatrics, 147(5), 592596. https://doi.org/10.1016/j.jpeds.2005.06.025 CrossRefGoogle ScholarPubMed
Månsson, J., Fellman, V., Stjernqvist, K., & the EXPRESS Study Group (authors) (2015). Extremely preterm birth affects boys more and socio-economic and neonatal variables pose sex-specific risks. Acta Paediatrica, 104(5), 514521. https://doi.org/10.1111/apa.12937 CrossRefGoogle ScholarPubMed
Markham, W. A., & Spencer, N. (2022). Factors that mediate the relationships between household socio-economic status and childhood Attention Deficit Hyperactivity Disorder (ADHD) in children and adolescents: A systematic review. PloS One, 17(3), e0262988. https://doi.org/10.1371/journal.pone.0262988 CrossRefGoogle ScholarPubMed
Martínez-Jiménez, M. D., Gómez-García, F. J., Gil-Campos, M., & Pérez-Navero, J. L. (2020). Comorbidities in childhood associated with extrauterine growth restriction in preterm infants: A scoping review. European Journal of Pediatrics, 179(8), 12551265. https://doi.org/10.1007/s00431-020-03613-8 CrossRefGoogle ScholarPubMed
Mathews, T. J., Miniño, A. M., Osterman, M. J., Strobino, D. M., & Guyer, B. (2011). Annual summary of vital statistics: 2008. Pediatrics, 127(1), 146157. https://doi.org/10.1542/peds.2010-3175 CrossRefGoogle Scholar
Mathewson, K. J., Chow, C. H., Dobson, K. G., Pope, E. I., Schmidt, L. A., & Van Lieshout, R. J. (2017). Mental health of extremely low birth weight survivors: A systematic review and meta-analysis. Psychological Bulletin, 143(4), 347383. https://doi.org/10.1037/bul0000091 CrossRefGoogle ScholarPubMed
McArdle, J. J. (2009). Latent variable modeling of differences and changes with longitudinal data. Annual Review of Psychology, 60(1), 577605. https://doi.org/10.1146/annurev.psych.60.110707.163612 CrossRefGoogle ScholarPubMed
McLaughlin, K. A., Breslau, J., Green, J. G., Lakoma, M. D., Sampson, N. A., Zaslavsky, A. M., & Kessler, R. C. (2011). Childhood socio-economic status and the onset, persistence, and severity of DSM-IV mental disorders in a US national sample. Social Science & Medicine, 73(7), 10881096. https://doi.org/10.1016/j.socscimed.2011.06.011 CrossRefGoogle Scholar
Ment, L. R., Kesler, S., Vohr, B., Katz, K. H., Baumgartner, H., Schneider, K. C., Delancy, S., Silbereis, J., Duncan, C. C., Constable, R. T., Makuch, R. W., Reiss, A. L. (2009). Longitudinal brain volume changes in preterm and term control subjects during late childhood and adolescence. Pediatrics, 123(2), 503511. https://doi.org/10.1542/peds.2008-0025 CrossRefGoogle ScholarPubMed
Metcalfe, N. B., & Monaghan, P. (2001). Compensation for a bad start: Grow now, pay later? Trends in Ecology & Evolution, 16(5), 254260. https://doi.org/10.1016/S0169-5347(01)02124-3 CrossRefGoogle ScholarPubMed
Miller, H. C., & Hassanein, K. (1971). Diagnosis of impaired fetal growth in newborn infants. Pediatrics, 48(4), 511522. https://doi.org/10.1542/peds.48.4.511 CrossRefGoogle ScholarPubMed
Miller, H. C., & Merritt, T. A. (1979). Fetal growth in humans. Year Book Medical Publishers.Google Scholar
Mummert, A., Schoen, M., & Lampl, M. (2018). Growth and life course health development. In Halfon, N., Forrest, C. B., Lerner, R. M., & Faustman, E. M. (Eds.), Handbook of life course health development (pp. 405429). Springer Open. https://doi.org/10.1007/978-3-319-47143-3 CrossRefGoogle ScholarPubMed
Muthén, B., Asparouhov, T., Hunter, A. M., & Leuchter, A. F. (2011). Growth modeling with nonignorable dropout: Alternative analyses of the STAR*D antidepressant trial. Psychological Methods, 16(1), 1733. https://doi.org/10.1037/a0022634 CrossRefGoogle ScholarPubMed
Muthén, L. K., & Muthén, B. (2017). Mplus (Version 8)[computer software]. Los Angeles, CA: Muthén & Muthén.Google Scholar
Narberhaus, A., Lawrence, E., Allin, M. P., Walshe, M., McGuire, P., Rifkin, L., Murray, R., Nosarti, C. (2009). Neural substrates of visual paired associates in young adults with a history of very preterm birth: Alterations in fronto-parieto-occipital networks and caudate nucleus. NeuroImage, 47(4), 18841893. https://doi.org/10.1016/j.neuroimage.2009.04.036 CrossRefGoogle ScholarPubMed
Natalucci, G., Becker, J., Becher, K., Bickle, G. M., Landolt, M. A., & Bucher, H. U. (2013). Self-perceived health status and mental health outcomes in young adults born with less than 1000 g. Acta Paediatrica, 102(3), 294299. https://doi.org/10.5167/uzh-70037 CrossRefGoogle ScholarPubMed
Newsom, J. T. (2015). Longitudinal structural equation modeling: A comprehensive introduction. Routledge, Taylor and Francis Group.CrossRefGoogle Scholar
Nilsson, P. M., Nilsson, J.Å., Östergren, P. O., & Rasmussen, F. (2004). Fetal growth predicts stress susceptibility independent of parental education in 161 991 adolescent Swedish male conscripts. Journal of Epidemiology & Community Health, 58(7), 571573. https://doi.org/10.1136/jech.2003.015495 CrossRefGoogle Scholar
Nomura, Y., Brooks-Gunn, J., Davey, C., Ham, J., & Fifer, W. P. (2007). The role of perinatal problems in risk of co-morbid psychiatric and medical disorders in adulthood. Psychological Medicine, 37(9), 13231334. https://doi.org/10.1017/S0033291707000736 CrossRefGoogle ScholarPubMed
Offord, D. R., Boyle, M. H., Szatmari, P., Rae-Grant, N. I., Links, P. S., Cadman, D. T., Byles, J. A., Crawford, J. W., Blum, H. M., Byrne, C., Thomas, H., & Woodward, C. A. (1987). Ontario Child Health Study: II. Six-month prevalence of disorder and rates of service utilization. Archives of General Psychiatry, 44(9), 832836. https://doi.org/10.1001/archpsyc.1987.01800210084013 CrossRefGoogle ScholarPubMed
Ong, K. K., Ahmed, M. L., Emmett, P. M., Preece, M. A., & Dunger, D. B. (2000). Association between postnatal catch-up growth and obesity in childhood: Prospective cohort study. British Medical Journal, 320(7240), 967971. https://doi.org/10.1136/bmj.320.7240.967 CrossRefGoogle ScholarPubMed
Ong, K. K., Kennedy, K., Castañeda‐Gutiérrez, E. D., Forsyth, S., Godfrey, K. M., Koletzko, B., Latulippe, M. E., Ozanne, S. E., Rueda, R., Schoemaker, M. H., Beek, E. M., Buuren, S., Fewtrell, M. (2015). Postnatal growth in preterm infants and later health outcomes: A systematic review. Acta Paediatrica, 104(10), 974986. https://doi.org/10.1111/apa.13128 CrossRefGoogle ScholarPubMed
Painter, R. C., Osmond, C., Gluckman, P., Hanson, M., Phillips, D. I. W., & Roseboom, T. J. (2008). Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life. BJOG : An International Journal of Obstetrics and Gynaecology, 115(10), 12431249. https://doi.org/10.1111/j.1471-0528.2008.01822.x CrossRefGoogle Scholar
Pesonen, A. K., Räikkönen, K., Kajantie, E., Heinonen, K., Strandberg, T. E., & Järvenpää, A. L. (2006). Fetal programming of temperamental negative affectivity among children born healthy at term. Developmental Psychobiology, 48(8), 633643. https://doi.org/10.1002/dev.20153 CrossRefGoogle ScholarPubMed
Peterson, C. M., Su, H., Thomas, D. M., Heo, M., Golnabi, A. H., Pietrobelli, A., & Heymsfield, S. B. (2017). Tri-ponderal mass index vs body mass index in estimating body fat during adolescence. JAMA Pediatrics, 171(7), 629636. https://doi.org/10.1001/jamapediatrics.2017.0460 CrossRefGoogle ScholarPubMed
Pettersson, E., Larsson, H., D’Onofrio, B., Almqvist, C., & Lichtenstein, P. (2019). Association of fetal growth with general and specific mental health conditions. JAMA Psychiatry, 76(5), 536543. https://doi.org/10.1001/jamapsychiatry.2018.4342 CrossRefGoogle ScholarPubMed
Pierrehumbert, B., Nicole, A., Muller-Nix, C., Forcada-Guex, M., & Ansermet, F. (2003). Parental post-traumatic reactions after premature birth: Implications for sleeping and eating problems in the infant. Archives of Disease in Childhood. Fetal and Neonatal Edition, 88(5), F400F404. https://doi.org/10.1136/fn.88.5.F400 CrossRefGoogle ScholarPubMed
Poole, K. L., Saigal, S., Van Lieshout, R. J., & Schmidt, L. A. (2020). Developmental programming of shyness: A longitudinal, prospective study across four decades. Development and Psychopathology, 32(2), 455464. https://doi.org/10.1017/S0954579419000208 CrossRefGoogle ScholarPubMed
Pridham, K. F., Brown, R., Sondel, S., Clark, R., & Green, C. (2001). Effects of biologic and experiential conditions on the pattern of growth in weight of premature and full-term infants. Research in Nursing & Health, 24(4), 283297. https://doi.org/10.1002/nur.1030 CrossRefGoogle ScholarPubMed
Pyhälä, R., Wolford, E., Kautiainen, H., Andersson, S., Bartmann, P., Baumann, N., Brubakk, A-M., Evensen, K. A. I., Hovi, P., Kajantie, E., Lahti, M., Van Lieshout, R. J., Saigal, S., Schmidt, L. A., Indredavik, M. S., Wolke, D., Räikkönen, K. (2017). Self-reported mental health problems among adults born preterm: A meta-analysis. Pediatrics, 139(4), e20162690. https://doi.org/10.1542/peds.2016-2690 CrossRefGoogle ScholarPubMed
Räikkönen, K., Pesonen, A-K., Kajantie, E., Heinonen, K., Forsén, T., Phillips, D. I. W., Osmond, C., Barker, D. J. P., Eriksson, J. G. (2007). Length of gestation and depressive symptoms at age 60 years. British Journal of Psychiatry, 190(6), 469474. https://doi.org/10.1192/bjp.bp.106.022145 CrossRefGoogle ScholarPubMed
Ramel, S. E., Brown, L. D., & Georgieff, M. K. (2014). The impact of neonatal illness on nutritional requirements—One size does not fit all. Current Pediatrics Reports, 2(4), 248254. https://doi.org/10.1007/s40124-014-0059-3 CrossRefGoogle Scholar
Räsänen, M., Kaprio, J., Laitinen, T., Winter, T., Koskenvuo, M., & Laitinen, L. A. (2000). Perinatal risk factors for asthma in Finnish adolescent twins. Thorax, 55(1), 2531. https://doi.org/10.1136/thorax.55.1.25 CrossRefGoogle ScholarPubMed
Reimold, M., Batra, A., Knobel, A., Smolka, M. N., Zimmer, A., Mann, K., Solbach, C., Reischl, G., Schwärzler, F., Gründer, G., Machulla, H-J., Bares, R., Heinz, A. (2008). Reduced serotonin transporter availability in patients with unipolar major depression reflect the level of anxiety. Molecular Psychiatry, 13(6), 557557. https://doi.org/10.1038/mp.2008.49 CrossRefGoogle Scholar
Reimold, M., Knobel, A., Rapp, M. A., Batra, A., Wiedemann, K., Ströhle, A., Zimmer, A., Schönknecht, P., Smolka, M. N., Weinberger, D. R., Goldman, D., Machulla, H-J. C., Bares, R., Heinz, A. (2011). Central serotonin transporter levels are associated with stress hormone response and anxiety. Psychopharmacology, 213(2-3), 563572. https://doi.org/10.1007/s00213-010-1903-y CrossRefGoogle ScholarPubMed
Saigal, S., Pinelli, J., Hoult, L., Kim, M. M., & Boyle, M. (2003). Psychopathology and social competencies of adolescents who were extremely low birth weight. Pediatrics, 111(5), 969975. https://doi.org/10.1542/peds.111.5.969 CrossRefGoogle ScholarPubMed
Saigal, S., Rosenbaum, P., Hattersley, B., & Milner, R. (1989). Decreased disability rate among 3-year-old survivors weighing 501 to 1000 grams at birth and born to residents of a geographically defined region from 1981 to 1984 compared with 1977 to 1980. Journal of Pediatrics, 114(5), 839846. https://doi.org/10.1016/S0022-3476(89)80150-7 CrossRefGoogle ScholarPubMed
Saigal, S., Stoskopf, B., Streiner, D., Paneth, N., Pinelli, J., & Boyle, M. (2006). Growth trajectories of extremely low birth weight infants from birth to young adulthood: A longitudinal, population-based study. Pediatric Research, 60(6), 751758. https://doi.org/10.1203/01.pdr.0000246201.93662.8e CrossRefGoogle ScholarPubMed
Sammallahti, S., Heinonen, K., Andersson, S., Lahti, M., Pirkola, S., Lahti, J., Pesonen, A-K., Lano, A., Wolke, D., Eriksson, J. G., Kajantie, E., Raikkonen, K. (2017). Growth after late-preterm birth and adult cognitive, academic, and mental health outcomes. Pediatric Research, 81(5), 767774. https://doi.org/10.1038/pr.2016.276 CrossRefGoogle ScholarPubMed
Sammallahti, S., Lahti, M., Pyhälä, R., Lahti, J., Pesonen, A-K., Heinonen, K., Hovi, P., Eriksson, J. G., Strang-Karlsson, S., Järvenpää, A-L., Andersson, S., Kajantie, E., Räikkönen, K., Rogers, L. K. (2015). Infant growth after preterm birth and mental health in young adulthood. PloS One, 10(9), e0137092. https://doi.org/10.1371/journal.pone.0137092 CrossRefGoogle ScholarPubMed
Sannoh, S., Demissie, K., Balasubramanian, B., & Rhoads, G. G. (2003). Risk factors for intrapair birth weight discordance in twins. Journal of Maternal-Fetal & Neonatal Medicine, 13(4), 230236. https://doi.org/10.1080/jmf.13.4.230.236 CrossRefGoogle ScholarPubMed
Schlotz, W., Jones, A., Godfrey, K. M., & Phillips, D. I. (2008). Effortful control mediates associations of fetal growth with hyperactivity and behavioural problems in 7-to 9-year-old children. Journal of Child Psychology and Psychiatry, 49(11), 12281236. https://doi.org/10.1111/j.1469-7610.2008.01946.x Google ScholarPubMed
Schlotz, W., & Phillips, D. I. (2009). Fetal origins of mental health: Evidence and mechanisms. Brain, Behavior, and Immunity, 23(7), 905916. https://doi.org/10.1016/j.bbi.2009.02.001 CrossRefGoogle ScholarPubMed
Schwartz, M. W., & Seeley, R. J. (1997). Neuroendocrine responses to starvation and weight loss. New England Journal of Medicine, 336(25), 18021811. https://doi.org/10.1056/NEJM199706193362507 CrossRefGoogle ScholarPubMed
Smith, T. F., Schmidt-Kastner, R., McGeary, J. E., Kaczorowski, J. A., & Knopik, V. S. (2016). Pre- and perinatal ischemia-hypoxia, the ischemia-hypoxia response pathway, and ADHD risk. Behavior Genetics, 46(3), 467477. https://doi.org/10.1007/s10519-016-9784-4 CrossRefGoogle ScholarPubMed
Soldateli, B., Silveira, R. C., Procianoy, R. S., Belfort, M., Caye, A., Leffa, D., Franz, A. P., Barros, F. C., Santos, I. S., Matijasevich, A., Barros, A. J. D., Tovo-Rodrigues, L., Menezes, A. M. B., Gonçalves, H., Wehrmeister, F. C., & Rohde, L. A. P. (2022). Association between preterm infant size at 1 year and ADHD later in life: data from 1993 and 2004 Pelotas Birth Cohorts. European Child & Adolescent Psychiatry. https://doi.org/10.1007/s00787-022-01967-y CrossRefGoogle ScholarPubMed
Stoll, B. J., Hansen, N. I., Bell, E. F., Walsh, M. C., Carlo, W. A., Shankaran, S., Laptook, A. R., Sánchez, P. J., Van Meurs, K. P., Wyckoff, M., Das, A., Hale, E. C., Ball, M. B., Newman, N. S., Schibler, K., Poindexter, B. B., Kennedy, K. A., Cotten, C. M., Watterberg, K. L., D’Angio, C. T., DeMauro, S. B., Truog, W. E., Devaskar, U., Higgins, R. D. (2015). Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993-2012. JAMA, 314(10), 10391051. https://doi.org/10.1001/jama.2015.10244 CrossRefGoogle ScholarPubMed
Su, B. H. (2014). Optimizing nutrition in preterm infants. Pediatrics & Neonatology, 55(1), 513. https://doi.org/10.1016/j.pedneo.2013.07.003 CrossRefGoogle ScholarPubMed
Szatmari, P., Saigal, S., Rosenbaum, P., & Campbell, D. (1993). Psychopathology and adaptive functioning among extremely low birthweight children at eight years of age. Development and Psychopathology, 5(3), 345357. https://doi.org/10.1017/S0954579400004454 CrossRefGoogle Scholar
Taine, M., Charles, M. A., Beltrand, J., Rozé, J. C., Léger, J., Botton, J., & Heude, B. (2018). Early postnatal growth and neurodevelopment in children born moderately preterm or small for gestational age at term: A systematic review. Paediatric and Perinatal Epidemiology, 32(3), 268280. https://doi.org/10.1111/ppe.12468 CrossRefGoogle ScholarPubMed
Taylor, H. G., Margevicius, S., Schluchter, M., Andreias, L., & Hack, M. (2015). Persisting behavior problems in extremely low birth weight adolescents. Journal of Developmental & Behavioral Pediatrics, 36(3), 178187. https://doi.org/10.1097/DBP.0000000000000139 CrossRefGoogle ScholarPubMed
Tore, E. C., Antoniou, E. E., Reed, K., Southwood, T. R., Smits, L., McCleery, J. P., & Zeegers, M. P. (2018). The association of intrapair birth-weight differences with internalizing and externalizing behavior problems. Twin Research and Human Genetics, 21(3), 253262. https://doi.org/10.1017/thg.2018.13 CrossRefGoogle ScholarPubMed
Woo, J. G. (2017). Fast, slow, high, and low: Infant and childhood growth as predictors of cardiometabolic outcomes. Journal of Pediatrics, 186, 1416. https://doi.org/10.1016/j.jpeds.2017.03.043 CrossRefGoogle ScholarPubMed
Woodward, L. J., Moor, S., Hood, K. M., Champion, P. R., Foster-Cohen, S., Inder, T. E., & Austin, N. C. (2009). Very preterm children show impairments across multiple neurodevelopmental domains by age 4 years. Archives of Disease in Childhood. Fetal and Neonatal Edition, 94(5), 339344. https://doi.org/10.1136/adc.2008.146282 CrossRefGoogle ScholarPubMed
Wüst, S., Entringer, S., Federenko, I. S., Schlotz, W., & Hellhammer, D. H. (2005). Birth weight is associated with salivary cortisol responses to psychosocial stress in adult life. Psychoneuroendocrinology, 30(6), 591598. https://doi.org/10.1016/j.psyneuen.2005.01.008 CrossRefGoogle ScholarPubMed
Yuan, K.-H., & Bentler, P. M. (1998). Normal theory-based test statistics in structural equation modeling. British Journal of Mathematical & Statistical Psychology, 51(2), 289309. https://doi.org/10.1111/j.2044-8317.1998.tb00682.x CrossRefGoogle Scholar
Zaniqueli, D., Oliosa, P. R., Neves, F. S., Pani, V. O., Martins, C. R., de Souza Peçanha, M. A., Barbosa, M. D., de Faria, E. R., de Oliveira Alvim, R., Mill, J. G. (2019). Ponderal index classifies obesity in children and adolescents more accurately than body mass index z-scores. Pediatric Research, 86(1), 128133. https://doi.org/10.1038/s41390-019-0395-7 CrossRefGoogle ScholarPubMed
Supplementary material: File

Mathewson et al. supplementary material

Mathewson et al. supplementary material

Download Mathewson et al. supplementary material(File)
File 327.9 KB