Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T15:19:08.170Z Has data issue: false hasContentIssue false

Differential susceptibility effects of maternal sensitivity in childhood on small for gestational age adults’ wealth

Published online by Cambridge University Press:  01 February 2019

Tobey Nichols
Affiliation:
Department of Child and Family Studies, University of Tennessee Knoxville, USA
Julia Jaekel
Affiliation:
Department of Child and Family Studies, University of Tennessee Knoxville, USA Department of Psychology, University of Warwick, UK
Peter Bartmann
Affiliation:
University Hospital Bonn, Germany
Dieter Wolke*
Affiliation:
Department of Psychology, University of Warwick, UK Division of Mental Health and Wellbeing, Warwick Medical School, University of Warwick, UK
*
Author for correspondence: Dieter Wolke, Department of Psychology, University of Warwick, CoventryCV4 7AL, UK. E-mail: D.Wolke@warwick.ac.uk

Abstract

Being born small for gestational age (SGA) is considered a developmental vulnerability. Alternatively, SGA may be viewed as a marker for individual susceptibility to environmental experiences. The aim was to test if individuals born SGA are more susceptible to both negative and positive environmental experiences assessed by sensitive parenting in childhood compared with those born appropriate for gestational age (AGA). The target outcome was wealth in young adulthood. A total of 438 participants (SGA, n = 109; AGA, n = 329) were studied as part of the prospective Bavarian Longitudinal Study of neonatal at-risk children. Maternal sensitivity was observed during a standardized mother-child interaction task, and IQ was assessed with the Kaufman Assessment Battery for Children at age 6 years. At age 26, participants’ wealth was assessed with a comprehensive composite score. Individuals born SGA were found to be more susceptible to the effects of sensitive parenting after controlling for gestational age and IQ at age 6 years. When maternal sensitivity was lower than average, SGA adults did worse than AGA adults, but when exposed to above-average maternal sensitivity in childhood, they obtained significantly higher wealth than their AGA peers by 26 years of age.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2015). The hidden efficacy of interventions: gene × environment experiments from a differential susceptibility perspective. Annual Review of Psychology, 66, 381409. doi:10.1146/annurev-psych-010814-015407CrossRefGoogle Scholar
Barker, D. J. (2007). The origins of the developmental origins theory. Journal of Internal Medicine, 261, 412417. doi:10.1111/j.1365-2796.2007.01809.xCrossRefGoogle ScholarPubMed
Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2007). For better and for worse: Differential susceptibility to environmental influences. Current Directions in Psychological Science, 16, 300304. doi:10.1111/j.1467-8721.2007.00525.xCrossRefGoogle Scholar
Belsky, J., & van Ijzendoorn, M. H. (2015). What works for whom: Genetic moderation of intervention efficacy. Development and Psychopathology, 27, 16.CrossRefGoogle ScholarPubMed
Belsky, J., & van IJzendoorn, M. H. (2017). Genetic differential susceptibility to the effects of parenting. Current Opinions in Psychology, 15, 125130. doi:10.1016/j.copsyc.2017.02.021CrossRefGoogle ScholarPubMed
Bilgin, A., Mendonca, M., & Wolke, D. (2018). Preterm birth/low birth weight and markers reflective of wealth in adulthood: A meta-analysis. Pediatrics, 142(1). doi:10.1542/peds.2017-3625CrossRefGoogle ScholarPubMed
Copeland, W. E., Wolke, D., Shanahan, L., & Costello, E. J. (2015). Adult functional outcomes of common childhood psychiatric problems: A prospective, longitudinal study. JAMA Psychiatry, 72, 892899. doi:10.1001/jamapsychiatry.2015.0730CrossRefGoogle ScholarPubMed
D'Onofrio, B. M., Class, Q. A., Rickert, M. E., Larsson, H., Langstrom, N., & Lichtenstein, P. (2013). Preterm birth and mortality and morbidity: A population-based quasi-experimental study. JAMA Psychiatry, 70, 12311240. doi:10.1001/jamapsychiatry.2013.2107CrossRefGoogle ScholarPubMed
DeWolff, M. S., & van Ijzendoorn, M. H. (1997). Sensitivity and attachment: A meta-analysis on parental antecedents of infant attachment. Child Development, 68, 571591.CrossRefGoogle Scholar
Ellis, B. J., Boyce, W. T., Belsky, J., Bakermans-Kranenburg, M. J., & van Ijzendoorn, M. H. (2011). Differential susceptibility to the environment: An evolutionary-neurodevelopmental theory. Development and Psychopathology, 23, 728. doi:10.1017/s0954579410000611CrossRefGoogle Scholar
Eryigit Madzwamuse, S., Baumann, N., Jaekel, J., Bartmann, P., & Wolke, D. (2015). Neuro-cognitive performance of very preterm or very low birth weight adults at 26 years. Journal of Child Psychology and Psychiatry, 56, 857864. doi:10.1111/jcpp.12358CrossRefGoogle ScholarPubMed
Feldman, R., & Eidelman, A. I. (2009). Biological and environmental initial conditions shape the trajectories of cognitive and social-emotional development across the first years of life. Developmental Science, 12, 194200.CrossRefGoogle ScholarPubMed
Gluckman, P. D., Hanson, M. A., Cooper, C., & Thornburg, K. L. (2008). Effect of in utero and early-life conditions on adult health and disease. New England Journal of Medicine, 359, 6173. doi:10.1056/NEJMra0708473CrossRefGoogle ScholarPubMed
Gutbrod, B., Wolke, D., Söhne, B., Ohrt, B., & Riegel, K. (2000). The effects of gestation and birthweight on the growth and development of very low birthweight small for gestational age infants: A matched group comparison. Archives of Disease in Childhood, 82, F208F214.CrossRefGoogle ScholarPubMed
Helgertz, J., & Vågerö, D. (2014). Small for gestational age and adulthood risk of disability pension: The contribution of childhood and adulthood conditions. Social Science & Medicine, 119, 249257. doi:10.1016/j.socscimed.2013.11.052CrossRefGoogle ScholarPubMed
Hille, E. T. M., Elbertse, L., Gravenhorst, J. B., Brand, R., & Verloove-Vanhorick, S. P. (2005). Nonresponse bias in a follow-up study of 19-year-old adolescents born as preterm infants. Pediatrics, 116, e662e666. doi:10.1542/peds.2005-0682CrossRefGoogle Scholar
Jaekel, J. (2016). Commentary: Supporting preterm children's parents matters–a reflection on Treyvaud et al. (2016). Journal of Child Psychology and Psychiatry, 57, 822823.CrossRefGoogle Scholar
Jaekel, J., Pluess, M., Belsky, J., & Wolke, D. (2015). Effects of maternal sensitivity on low birth weight children's academic achievement: A test of differential susceptibility versus diathesis stress. Journal of Child Psychology and Psychiatry, 56, 693701. doi:10.1111/jcpp.12331CrossRefGoogle ScholarPubMed
Jaekel, J., Wolke, D., & Chernova, J. (2012). Mother and child behaviour in very preterm and term dyads at 6 and 8 years. Developmental Medicine & Child Neurology, 54, 716723.CrossRefGoogle ScholarPubMed
Kulseng, S., Jennekens-Schinkel, A., Naess, P., Romundstad, P., Indredavik, M., Vik, T., & Brubakk, A.-M. (2006). Very-low-birthweight and term small-for-gestational-age adolescents: Attention revisited. Acta Paediatrica, 95, 224230. doi:10.1111/j.1651-2227.2006.tb02211.xCrossRefGoogle ScholarPubMed
Landry, S. H., Smith, K. E., Miller-Loncar, C. L., & Swank, P. R. (1997). Predicting cognitive-language and social growth curves from early maternal behaviors in children at varying degrees of biological risk. Developmental Psychology, 33, 10401053.CrossRefGoogle ScholarPubMed
Li, X., Eiden, R. D., Epstein, L. H., Shenassa, E. D., Xie, C., & Wen, X. (2017). Parenting and cognitive and psychomotor delay due to small-for-gestational-age birth. Journal of Child Psychology and Psychiatry, 58, 169179. doi:10.1111/jcpp.12644CrossRefGoogle ScholarPubMed
Lionetti, F., Aron, A., Aron, E. N., Burns, G. L., Jagiellowicz, J., & Pluess, M. (2018). Dandelions, tulips and orchids: Evidence for the existence of low-sensitive, medium-sensitive and high-sensitive individuals. Translational Psychiatry, 8, 24. doi:10.1038/s41398-017-0090-6CrossRefGoogle ScholarPubMed
Lohaugen, G. C. C., Ostgard, H. F., Andreassen, S., Jacobsen, G. W., Vik, T., Brubakk, A. M., … Martinussen, M. (2013). Small for gestational age and intrauterine growth restriction decreases cognitive function in young adults. Journal of Pediatrics, 163, 447453. doi:10.1016/j.jpeds.2013.01.060CrossRefGoogle ScholarPubMed
McCormick, M. (1997). The outcomes of very low birth weight infants: are we asking the right questions? Pediatrics, 99, 869876.CrossRefGoogle ScholarPubMed
Melchers, P., & Preuss, U. (1991). K-ABC: Kaufman Battery for Children: Deutschsprachige Fassung. Frankfurt, AM: Swets & Zeitlinger.Google Scholar
Moffitt, T. E., Arseneault, L., Belsky, D., Dickson, N., Hancox, R. J., Harrington, H., … Caspi, A. (2011). A gradient of childhood self-control predicts health, wealth, and public safety. Proceedings of the National Academy of Sciences, 108, 26932698. doi:10.1073/pnas.1010076108CrossRefGoogle ScholarPubMed
Moore, T., Hennessy, E. M., Myles, J., Johnson, S., Draper, E. S., Costeloe, K. L., & Marlow, N. (2012). Neurological and developmental outcome in extremely preterm children born in England in 1995 and 2006: The EPICure studies. BMJ, 345, e7961. doi:10.1136/bmj.e7961CrossRefGoogle ScholarPubMed
O'Keeffe, M. J., O'Callaghan, M., Williams, G. M., Najman, J. M., & Bor, W. (2003). Learning, cognitive, and attentional problems in adolescents born small for gestational age. Pediatrics, 112, 301307.CrossRefGoogle ScholarPubMed
Pierrat, V., Marchand-Martin, L., Arnaud, C., Kaminski, M., Resche-Rigon, M., Lebeaux, C., … Ancel, P. Y. (2017). Neurodevelopmental outcome at 2 years for preterm children born at 22 to 34 weeks' gestation in France in 2011: EPIPAGE-2 cohort study. BMJ, 358, j3448. doi:10.1136/bmj.j3448CrossRefGoogle ScholarPubMed
Pluess, M. (2015). Individual differences in environmental sensitivity. Child Development Perspectives, 9, 138143. doi:10.1111/cdep.12120CrossRefGoogle Scholar
Pluess, M., Assary, E., Lionetti, F., Lester, K. J., Krapohl, E., Aron, E. N., & Aron, A. (2018). Environmental sensitivity in children: Development of the Highly Sensitive Child Scale and identification of sensitivity groups. Developmental Psychology, 54, 5170. doi:10.1037/dev0000406CrossRefGoogle ScholarPubMed
Pluess, M., & Belsky, J. (2010). Children's differential susceptibility to effects of parenting. Family Science, 1, 1425. doi:10.1080/19424620903388554CrossRefGoogle Scholar
Pluess, M., & Belsky, J. (2011). Prenatal programming of postnatal plasticity? Development and Psychopathology, 23, 2938. doi:doi:10.1017/S0954579410000623CrossRefGoogle ScholarPubMed
Pyhala, R., Lahti, J., Heinonen, K., Pesonen, A. K., Strang-Karlsson, S., Hovi, P., … Raikkonen, K. (2011). Neurocognitive abilities in young adults with very low birth weight. Neurology, 77, 20522060. doi:10.1212/WNL.0b013e31823b473eCrossRefGoogle ScholarPubMed
Raikkonen, K., & Pesonen, A.-K. (2009). Early life origins of psychological development and mental health. Scandinavian Journal of Psychology, 50, 583591.CrossRefGoogle ScholarPubMed
Riegel, K., Ohrt, B., Wolke, D., & Österlund, K. (1995). Die Entwicklung gefährdet geborener Kinder bis zum fünften Lebensjahr. Die Arvo Ylppoe Neugeborenen-Nachfolgestudie in Südbayern und Südfinnland. Stuttgart: Ferdinand Enke Verlag.Google Scholar
Shah, P., & Kingdom, J. (2011). Long-term neurocognitive outcomes of SGA/IUGR infants. Obstetrics, Gynaecology & Reproductive Medicine, 21, 142146. doi:10.1016/j.ogrm.2011.02.004CrossRefGoogle Scholar
Strauss, R. S. (2000). Adult functional outcome of those born small for gestational age: Twenty-six–year follow-up of the 1970 british birth cohort. JAMA, 283, 625632. doi:10.1001/jama.283.5.625CrossRefGoogle ScholarPubMed
Treyvaud, K., Doyle, L. W., Lee, K. J., Ure, A., Inder, T. E., Hunt, R. W., & Anderson, P. J. (2016). Parenting behavior at 2 years predicts school-age performance at 7 years in very preterm children. Journal of Child Psychology and Psychiatry, 57, 814821.CrossRefGoogle ScholarPubMed
van der Kooy-Hofland, V. A. C., van der Kooy, J., Bus, A. G., van Ijzendoorn, M. H., & Bonsel, G. J. (2012). Differential susceptibility to early literacy intervention in children with mild perinatal adversities: Short- and long-term effects of a randomized control trial. Journal of Educational Psychology, 104, 337349. doi:10.1037/a0026984CrossRefGoogle Scholar
Wadhwa, P. D., Buss, C., Entringer, S., & Swanson, J. M. (2009). Developmental origins of health and disease: Brief history of the approach and current focus on epigenetic mechanisms. Seminars in Reproductive Medicine, 27, 358368. doi:10.1055/s-0029-1237424CrossRefGoogle ScholarPubMed
Widaman, K. F., Helm, J. L., Castro-Schilo, L., Pluess, M., Stallings, M. C., & Belsky, J. (2012). Distinguishing ordinal and disordinal interactions. Psychological Methods, 17, 615622.CrossRefGoogle ScholarPubMed
Windhorst, D. A., Rippe, R. C. A., Mileva-Seitz, V. R., Verhulst, F. C., Jaddoe, V. W. V., Noppe, G., … Bakermans-Kranenburg, M. J. (2017). Mild perinatal adversities moderate the association between maternal harsh parenting and hair cortisol: Evidence for differential susceptibility. Developmental Psychobiology, 59, 324337. doi:10.1002/dev.21497CrossRefGoogle ScholarPubMed
Wolke, D., Copeland, W. E., Angold, A., & Costello, E. J. (2013b). Impact of bullying in childhood on adult health, wealth, crime and social outcomes. Psychological Science, 24, 19581970. doi:10.1177/0956797613481608CrossRefGoogle Scholar
Wolke, D., Jaekel, J., Hall, J., & Baumann, N. (2013a). Effects of sensitive parenting on the academic resilience of very preterm and very low birth weight adolescents. Journal of Adolescent Health, 53, 642647.CrossRefGoogle Scholar
Wolke, D., & Meyer, R. (1999). Cognitive status, language attainment, and prereading skills of 6-year-old very preterm children and their peers: The Bavarian Longitudinal Study. Developmental Medicine & Child Neurology, 41, 94109.CrossRefGoogle ScholarPubMed
Wolke, D., Rios, P., & Unzer, A. (1995). AMCIES Evaluation of Mother-Child Interaction With the Etch-A-Sketch. Unpublished manuscript, University of Hertfordshire.Google Scholar
Wolke, D., Strauss, V. Y.-C., Johnson, S., Gilmore, C., Marlow, N., & Jaekel, J. (2015). Universal gestational age effects on cognitive and basic mathematic processing: 2 cohorts in 2 countries. The Journal of Pediatrics, 166, 14101416.CrossRefGoogle ScholarPubMed
Workalemahu, T., Grantz, K. L., Grewal, J., Zhang, C., Louis, G. M. B., & Tekola-Ayele, F. (2018). Genetic and environmental influences on fetal growth vary during sensitive periods in pregnancy. Scientific Report, 8, 7274. doi:10.1038/s41598-018-25706-zCrossRefGoogle ScholarPubMed
Zuckerman, M. (1999). Vulnerability to psychopathology: A biosocial model. Washington, DC: American Psychological Association.CrossRefGoogle Scholar
Supplementary material: File

Nichols et al. supplementary material

Appendix

Download Nichols et al. supplementary material(File)
File 82.2 KB