Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-gsnzm Total loading time: 0.417 Render date: 2022-10-03T10:43:44.195Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Transcriptional subtyping explains phenotypic variability in genetic subtypes of autism spectrum disorder

Published online by Cambridge University Press:  11 September 2020

Sandy Trinh*
Affiliation:
Department of Educational Psychology, University of Washington, Seattle, WA, USA
Anne Arnett
Affiliation:
Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, USA Department of Psychiatry & Behavioral Medicine, Seattle Children's Hospital, Seattle, WA, USA
Evangeline Kurtz-Nelson
Affiliation:
Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, USA
Jennifer Beighley
Affiliation:
Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, USA
Marta Picoto
Affiliation:
Department of Educational Psychology, University of Washington, Seattle, WA, USA
Raphael Bernier
Affiliation:
Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, USA
*
Author for correspondence: Sandy Trinh, MS, University of Washington, Department of Educational Psychology, Box 353600, Seattle, WA98195; E-mail: strinh2@uw.edu

Abstract

Autism spectrum disorder (ASD) is a common neurodevelopmental disorder characterized by deficits in social communication and presence of restricted, repetitive behaviors, and interests. However, individuals with ASD vary significantly in their challenges and abilities in these and other developmental domains. Gene discovery in ASD has accelerated in the past decade, and genetic subtyping has yielded preliminary evidence of utility in parsing phenotypic heterogeneity through genomic subtypes. Recent advances in transcriptomics have provided additional dimensions with which to refine genetic subtyping efforts. In the current study, we investigate phenotypic differences among transcriptional subtypes defined by neurobiological spatiotemporal co-expression patterns. Of the four transcriptional subtypes examined, participants with mutations to genes typically expressed highly in all brain regions prenatally, and those with differential postnatal cerebellar expression relative to other brain regions, showed lower cognitive and adaptive skills, higher severity of social communication deficits, and later acquisition of speech and motor milestones, compared to those with mutations to genes highly expressed during the postnatal period across brain regions. These findings suggest higher-order characterization of genetic subtypes based on neurobiological expression patterns may be a promising approach to parsing phenotypic heterogeneity among those with ASD and related neurodevelopmental disorders.

Type
Special Section Articles
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Both authors contributed equally to this work.

References

American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed). Arlington, VA: American Psychiatric Association.Google Scholar
Arnett, A. B., Beighley, J. S., Kurtz-Nelson, E. C., Hoekzema, K., Wang, T., Bernier, R. A., & Eichler, E. E. (Under Review). Developmental predictors of cognitive and adaptive outcomes in genetic subtypes of autism spectrum disorder.Google Scholar
Arnett, A. B., Rhoads, C. L., Hoekzema, K., Turner, T. N., Gerdts, J., Wallace, A. S., … Bernier, R. A. (2018). The autism spectrum phenotype in ADNP syndrome. Autism Research, 11, 13001310.CrossRefGoogle ScholarPubMed
Arnett, A. B., Trinh, S., & Bernier, R. A. (2019). The state of research on the genetics of autism spectrum disorder: methodological, clinical and conceptual progress. Current Opinion in Psychology, 27, 15.CrossRefGoogle ScholarPubMed
Becker, E. B., & Stoodley, C. J. (2013). Autism spectrum disorder and the cerebellum. In International review of neurobiology (Vol. 113, pp. 134). Elsevier.Google Scholar
Beighley, J. S., Hudac, C. M., Arnett, A. B., Peterson, J. L., Gerdts, J., Wallace, A. S., … O'Roak, B. J. (2019). Clinical phenotypes of carriers of mutations in CHD8 or its conserved target genes. Biological Psychiatry, 87, 123131.CrossRefGoogle ScholarPubMed
Bernier, R., Golzio, C., Xiong, B., Stessman, H. A., Coe, B. P., Penn, O., … Vulto-van Silfhout, A. T. (2014). Disruptive CHD8 mutations define a subtype of autism early in development. Cell, 158, 263276.CrossRefGoogle ScholarPubMed
Bishop, S. L., Hus, V., Duncan, A., Huerta, M., Gotham, K., Pickles, A., … Lord, C. (2013). Subcategories of restricted and repetitive behaviors in children with autism spectrum disorders. Journal of Autism and Developmental Disorders, 43, 12871297.CrossRefGoogle ScholarPubMed
Bodfish, J. W., Symons, F. J., Parker, D. E., & Lewis, M. H. (2000). Varieties of repetitive behavior in autism: Comparisons to mental retardation. Journal of Autism and Developmental Disorders, 30, 237243.CrossRefGoogle ScholarPubMed
Bolduc, M.-E., Du Plessis, A. J., Sullivan, N., Guizard, N., Zhang, X., Robertson, R. L., & Limperopoulos, C. (2012). Regional cerebellar volumes predict functional outcome in children with cerebellar malformations. The Cerebellum, 11, 531542.CrossRefGoogle ScholarPubMed
Bolduc, M.-E., Du Plessis, A. J., Sullivan, N., Khwaja, O. S., Zhang, X., Barnes, K., … Limperopoulos, C. (2011). Spectrum of neurodevelopmental disabilities in children with cerebellar malformations. Developmental Medicine & Child Neurology, 53, 409416.CrossRefGoogle ScholarPubMed
Buxbaum, J., Cicek, E., Devlin, B., Klei, L., Roeder, K., & De Rubeis, S. (2017). Combining autism and intellectual disability exome data implicates disruption of neocortical development in both disorders. European Neuropsychopharmacology, 27, S437.CrossRefGoogle Scholar
Courchesne, E., Campbell, K., & Solso, S. (2011). Brain growth across the life span in autism: age-specific changes in anatomical pathology. Brain Research, 1380, 138145.CrossRefGoogle ScholarPubMed
Courchesne, E., Mouton, P. R., Calhoun, M. E., Semendeferi, K., Ahrens-Barbeau, C., Hallet, M. J., … Pierce, K. (2011). Neuron number and size in prefrontal cortex of children with autism. JAMA, 306, 20012010.CrossRefGoogle ScholarPubMed
Courchesne, E., Pramparo, T., Gazestani, V. H., Lombardo, M. V., Pierce, K., & Lewis, N. E. (2019). The ASD living biology: From cell proliferation to clinical phenotype. Molecular Psychiatry, 24, 88107.CrossRefGoogle ScholarPubMed
Earl, R. K., Turner, T. N., Mefford, H. C., Hudac, C. M., Gerdts, J., Eichler, E. E., & Bernier, R. A. (2017). Clinical phenotype of ASD-associated DYRK1A haploinsufficiency. Molecular Autism, 8, 54.CrossRefGoogle ScholarPubMed
Elliot, C. (2007). Differential abilities scale—2nd edition (DAS-II) manual. San Antonio, TX: Harcourt Assessment, Inc.Google Scholar
Fischbach, G. D., & Lord, C. (2010). The Simons Simplex Collection: a resource for identification of autism genetic risk factors. Neuron, 68, 192195.CrossRefGoogle ScholarPubMed
Goin-Kochel, R. P., Trinh, S., Barber, S., & Bernier, R. (2017). Gene disrupting mutations associated with regression in autism spectrum disorder. Journal of Autism and Developmental Disorders, 47, 36003607.CrossRefGoogle ScholarPubMed
Gozes, I. (2020). Activity-dependent neuroprotective protein (ADNP)/NAP (CP201): Autism, schizophrenia, and Alzheimer's disease. In Neuroprotection in autism, schizophrenia and Alzheimer's disease (pp. 320). Elsevier.CrossRefGoogle Scholar
Gualtieri, T., & Hicks, R. E. (1985). An immunoreactive theory of selective male affliction. Behavioral and Brain Sciences, 8, 427441.CrossRefGoogle Scholar
Hudac, C. M., Stessman, H. A., DesChamps, T. D., Kresse, A., Faja, S., Neuhaus, E., … Bernier, R. A. (2017). Exploring the heterogeneity of neural social indices for genetically distinct etiologies of autism. Journal of Neurodevelopmental Disorders, 9, 24.CrossRefGoogle ScholarPubMed
Hus, V., Gotham, K., & Lord, C. (2014). Standardizing ADOS domain scores: Separating severity of social affect and restricted and repetitive behaviors. Journal of Autism and Developmental Disorders, 44, 24002412.CrossRefGoogle ScholarPubMed
Hus, V., Taylor, A., & Lord, C. (2011). Telescoping of caregiver report on the Autism Diagnostic Interview–Revised. Journal of Child Psychology and Psychiatry, 52, 753760.CrossRefGoogle ScholarPubMed
Iossifov, I., O'roak, B. J., Sanders, S. J., Ronemus, M., Krumm, N., Levy, D., … Patterson, K. E. (2014). The contribution of de novo coding mutations to autism spectrum disorder. Nature, 515, 216221.CrossRefGoogle ScholarPubMed
Jaffe, A. E. (2016). Postmortem human brain genomics in neuropsychiatric disorders—how far can we go? Current Opinion in Neurobiology, 36, 107111.CrossRefGoogle Scholar
James, A., & Taylor, E. (1990). Sex differences in the hyperkinetic syndrome of childhood. Journal of Child Psychology and Psychiatry, 31, 437446.CrossRefGoogle ScholarPubMed
Kang, H. J., Kawasawa, Y. I., Cheng, F., Zhu, Y., Xu, X., Li, M., … Sedmak, G. (2011). Spatio-temporal transcriptome of the human brain. Nature, 478, 483.CrossRefGoogle ScholarPubMed
King, B. H., Navot, N., Bernier, R., & Webb, S. J. (2014). Update on diagnostic classification in autism. Current Opinion in Psychiatry, 27, 105.CrossRefGoogle ScholarPubMed
Leekam, S. R., Prior, M. R., & Uljarevic, M. (2011). Restricted and repetitive behaviors in autism spectrum disorders: A review of research in the last decade. Psychological Bulletin, 137, 562.CrossRefGoogle ScholarPubMed
Li, M., Santpere, G., Kawasawa, Y. I., Evgrafov, O. V., Gulden, F. O., Pochareddy, S., … Zhu, Y. (2018). Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science, 362, eaat7615.CrossRefGoogle ScholarPubMed
Lin, G. N., Corominas, R., Lemmens, I., Yang, X., Tavernier, J., Hill, D. E., … Iakoucheva, L. M. (2015). Spatiotemporal 16p11. 2 protein network implicates cortical late mid-fetal brain development and KCTD13-Cul3-RhoA pathway in psychiatric diseases. Neuron, 85, 742754.CrossRefGoogle ScholarPubMed
Lord, C., Risi, S., Lambrecht, L., Cook, E. H., Leventhal, B. L., DiLavore, P. C., ... & Rutter, M. (2000). The Autism Diagnostic Observation Schedule—Generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30, 205223.CrossRefGoogle ScholarPubMed
Lord, C., Rutter, M., DiLavore, P., Risi, S., Gotham, K., & Bishop, S. (2012). Autism diagnostic observation schedule–2nd edition (ADOS-2). Los Angeles, CA: Western Psychological Corporation.Google Scholar
Maenner, M. J., Shaw, K. A., Baio, J., Washington, A., Patrick, M., DiRienzo, M., … Dietz, P. M. (2020). Prevalence of Autism Spectrum Disorder Among Children Aged, 8), Years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2016. MMWR Surveillance Summaries, 69, 112.CrossRefGoogle Scholar
Mullen, E. M. (1995). Mullen scales of early learning. Circle Pines. MN: AGS.Google Scholar
Neale, B. M., Kou, Y., Liu, L., Ma'Ayan, A., Samocha, K. E., Sabo, A., … Makarov, V. (2012). Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature, 485, 242245.CrossRefGoogle ScholarPubMed
O'Roak, B. J., Deriziotis, P., Lee, C., Vives, L., Schwartz, J. J., Girirajan, S., … Baker, C. (2011). Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nature Genetics, 43, 585.CrossRefGoogle ScholarPubMed
O'Roak, B. J., Vives, L., Girirajan, S., Karakoc, E., Krumm, N., Coe, B. P., … Smith, J. D. (2012). Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature, 485, 246.CrossRefGoogle ScholarPubMed
Parikshak, N. N., Luo, R., Zhang, A., Won, H., Lowe, J. K., Chandran, V., … Geschwind, D. H. (2013). Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell, 155, 10081021.CrossRefGoogle ScholarPubMed
Ramaswami, G., & Geschwind, D. H. (2018). Genetics of autism spectrum disorder. In Handbook of clinical neurology (Vol. 147, pp. 321329). Elsevier.Google Scholar
Rutter, M., Le Couteur, A., & Lord, C. (2003). Autism diagnostic interview-revised. Los Angeles, CA: Western Psychological Services.Google Scholar
Sanders, S. J., Campbell, A. J., Cottrell, J. R., Moller, R. S., Wagner, F. F., Auldridge, A. L., … Empfield, J. R. (2018). Progress in understanding and treating SCN2A-mediated disorders. Trends in Neurosciences, 41, 442456.CrossRefGoogle ScholarPubMed
Sanders, S. J., Murtha, M. T., Gupta, A. R., Murdoch, J. D., Raubeson, M. J., Willsey, A. J., … Stein, J. L. (2012). De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature, 485, 237241.CrossRefGoogle ScholarPubMed
Satterstrom, F. K., Kosmicki, J. A., Wang, J., Breen, M. S., De Rubeis, S., An, J.-Y., … Klei, L. (2020). Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell, 180, 568584. e523.CrossRefGoogle ScholarPubMed
Silbereis, J. C., Pochareddy, S., Zhu, Y., Li, M., & Sestan, N. (2016). The cellular and molecular landscapes of the developing human central nervous system. Neuron, 89, 248268.CrossRefGoogle ScholarPubMed
Sparrow, S. S., Balla, D. A., & Cicchetti, D. V. (2005). Vineland II: Vineland adaptive behavior scales. American Guidance Service.Google Scholar
Stessman, H. A., Xiong, B., Coe, B. P., Wang, T., Hoekzema, K., Fenckova, M., … Cosemans, N. (2017). Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nature Genetics, 49, 515.CrossRefGoogle ScholarPubMed
Tavano, A., Grasso, R., Gagliardi, C., Triulzi, F., Bresolin, N., Fabbro, F., & Borgatti, R. (2007). Disorders of cognitive and affective development in cerebellar malformations. Brain, 130, 26462660.CrossRefGoogle ScholarPubMed
Thomason, M. E., Hect, J., Waller, R., Manning, J. H., Stacks, A. M., Beeghly, M., … Hernandez-Andrade, E. (2018). Prenatal neural origins of infant motor development: Associations between fetal brain and infant motor development. Development and Psychopathology, 30, 763772.CrossRefGoogle ScholarPubMed
Wechsler, D. (2003). WISC-IV: Administration and scoring manual. Psychological Corporation.Google Scholar
Wechsler, D. (2011). WASI-II: Wechsler abbreviated scale of intelligence. PsychCorp.Google Scholar
Willsey, A. J., Sanders, S. J., Li, M., Dong, S., Tebbenkamp, A. T., Muhle, R. A., … Miller, J. A. (2013). Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell, 155, 9971007.CrossRefGoogle ScholarPubMed
Wolff, J. J., Swanson, M. R., Elison, J. T., Gerig, G., Pruett, J. R., Styner, M. A., … Estes, A. M. (2017). Neural circuitry at age 6 months associated with later repetitive behavior and sensory responsiveness in autism. Molecular Autism, 8, 8.CrossRefGoogle ScholarPubMed
Xu, X., Wells, A. B., O'Brien, D. R., Nehorai, A., & Dougherty, J. D. (2014). Cell type-specific expression analysis to identify putative cellular mechanisms for neurogenetic disorders. Journal of Neuroscience, 34, 14201431.CrossRefGoogle ScholarPubMed
Supplementary material: File

Trinh et al. supplementary material

Tables S1-S2

Download Trinh et al. supplementary material(File)
File 57 KB
2
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Transcriptional subtyping explains phenotypic variability in genetic subtypes of autism spectrum disorder
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Transcriptional subtyping explains phenotypic variability in genetic subtypes of autism spectrum disorder
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Transcriptional subtyping explains phenotypic variability in genetic subtypes of autism spectrum disorder
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *