Hostname: page-component-788cddb947-2s2w2 Total loading time: 0 Render date: 2024-10-12T07:37:18.943Z Has data issue: false hasContentIssue false

Salivary cortisol levels in children of low-income women with high depressive symptomatology

Published online by Cambridge University Press:  21 April 2008

Lia C. H. Fernald*
Affiliation:
University of California, Berkeley
Heather M. Burke
Affiliation:
University of California, San Francisco
Megan R. Gunnar
Affiliation:
University of Minnesota
*
Address correspondence and reprint requests to: Lia Fernald, School of Public Health, University of California, Berkeley, 50 University Hall, MC 7360, Berkeley, CA 94720-7360; E-mail: fernald@berkeley.edu.

Abstract

Children (N = 324 boys, 315 girls) between the ages of 2.5 and 6 (mean age = 3.63) were identified in a house to house survey in low-income areas (income <20th percentile nationally) of urban Mexico. The Center for Epidemiologic Studies—Depression Scale was administered to mothers of all children. Salivary cortisol samples were taken in children as a measure of hypothalamic–pituitary–adrenocortical (HPA) system activity at time of arrival (baseline, Time 0), 25 min after arrival (Time 1), and 50 min after arrival (Time 2). Between Time 0 and Time 1, children were administered several cognitive tests. Results of hierarchical linear modeling analyses revealed that higher levels of maternal depressive symptoms were associated with lower baseline cortisol levels in their children (p < .05), while controlling for age, gender, and time since awakening. Higher levels of maternal depressive symptoms were associated with less of an increase in salivary cortisol to the arrival of the experimenters and subsequent cognitive testing (p < .05). All results were moderated by gender, with enhanced cortisol response in girls and no response in boys. These results suggest that among very low-income families, high maternal depressive symptoms are associated with hypoactivity of the HPA system in children, particularly boys.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This research was supported by the John D. and Catherine T. MacArthur Foundation Network on SES and Health, the Fogarty International Center of NIH (K01 TW06077, PI Lia Fernald), NICHD (R01 HD40864, PI Paul Gertler), and NIMH (K05 MH66208, PI Megan Gunnar). The authors thank Ryo Shiba, Francisco Papaqui, Gustavo Olaiz, Aurora Franco, Mauricio Hernandez, Stefano Bertozzi, Lynnette Neufeld, and Juan Pablo Gutierrez at Mexico's National Institute of Public Health (INSP), Andrea Gierens at the University of Trier, Paul Gertler at the University of California at Berkeley, Nancy Adler at the University of California, San Francisco, and the anonymous reviewers of this Journal.

References

Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. Thousand Oaks, CA: Sage.Google Scholar
Arcenio, W. F., Sesin, M., & Siegel, L. (2004). Emotion-related abilities and depressive symptoms in Latina mothers and their children. Development and Psychopathology, 16, 95112.Google Scholar
Ashman, S. B., Dawson, G., Panagiotides, H., Yamada, E., & Wilkinson, C. W. (2002). Stress hormone levels of children of depressed mothers. Development and Psychopathology, 14, 333349.CrossRefGoogle ScholarPubMed
Barraza-Llorens, M., Bertozzi, S., Gonzalez-Pier, E., & Gutierrez, J. P. (2002). Addressing inequity in health and health care in Mexico. Health Affairs (Millwood), 21, 4756.CrossRefGoogle ScholarPubMed
Blair, C., Granger, D., & Razza, R. P. (2005). Cortisol reactivity is positively related to executive function in preschool children attending head start. Child Development, 76, 554567.CrossRefGoogle ScholarPubMed
Bolig, E. E., Borkowski, J., & Brandenberger, J. (1999). Poverty and health across the life span. In Whitman, T. L. & Merluzzi, T. V. (Eds.), Life span perspectives on health and illness (pp. 6784). Mahwah, NJ: Erlbaum.Google Scholar
Boyce, W. T., & Ellis, B. J. (2005). Biological sensitivity to context: I. An evolutionary–developmental theory of the origins and functions of stress reactivity. Development and Psychopathology, 17, 271301.CrossRefGoogle ScholarPubMed
Bradley, R. H., & Corwyn, R. F. (2002). Socioeconomic status and child development. Annual Review of Psychology, 53, 371399.CrossRefGoogle ScholarPubMed
Bradley, R. H., Corwyn, R. F., McAdoo, H. P., & Garcia Coll, C. (2001). The home environments of children in the United States Part I: Variations by age, ethnicity, and poverty status. Child Development, 72, 18441867.CrossRefGoogle ScholarPubMed
Breitmayer, B. J., & Ramey, C. T. (1986). Biological nonoptimality and quality of postnatal environment as codeterminants of intellectual development. Child Development, 57, 11511165.CrossRefGoogle ScholarPubMed
Brooks-Gunn, J., Klebanov, P., Liaw, F. R., & Duncan, G. J. (1995). Toward an understanding of the effects of poverty upon children. In Fitzgerald, H. E. & Lester, B. M. (Eds.), Children of poverty: Research, health, and policy issues (pp. 341). New York: Garland.Google Scholar
Brooks-Gunn, J., Leventhal, T., & Duncan, G. J. (2000). Why poverty matters for young children: Implications for policy. In Osofsky, J. D. & Fitzgerald, H. E. (Eds.), Parenting and child care (pp. 89131). New York: Wiley.Google Scholar
Burke, H. M., Davis, M. C., Otte, C., & Mohr, D. C. (2005) Depression and cortisol responses to psychological stress: A meta-analysis. Psychoneuroendocrinology, 30, 846856.CrossRefGoogle ScholarPubMed
Burke, H. M., Fernald, L. C., Gertler, P. J., & Adler, N. E. (2005). Depressive symptoms are associated with blunted cortisol stress responses in very low-income women. Psychosomatic Medicine, 67, 211216.CrossRefGoogle ScholarPubMed
Ceballo, R., & McLoyd, V. C. (2002). Social support and parenting in poor, dangerous neighborhoods. Child Development, 73, 13101321.CrossRefGoogle ScholarPubMed
Cohen, D. A., Mason, K., Bedimo, A., Scribner, R., Basolo, V., & Farley, T. A. (2003). Neighborhood physical conditions and health. American Journal of Public Health, 93, 467471.CrossRefGoogle ScholarPubMed
Dawson, G., & Ashman, S. (2000). On the origins of a vulnerability to depression: The influence of early social environment on the development of psychobiological systems related to risk for affective disorder. In Nelson, C. A. (Ed.), The effects of adversity on neurobehavioral development. Minnesota symposia on child psychology (pp. 245278). New York: Erlbaum.Google Scholar
de Haan, M., Gunnar, M. R., Tout, K., Hart, J., & Stansbury, K. (1998). Familiar and novel contexts yield different associations between cortisol and behavior among 2-year-old children. Developmental Psychobiology, 33, 93101.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Del Pozo-González, B., & Aparicio-Jiménez, R. (2002). Criterios para la selección de la muestra de evaluación del Programa de Educación, Salud y Alimentación en localidades urbanas y semi-urbanas. [Criteria for the selection of the evaluation sample of the Program of Education, Health and Nutrition in urban and semi-urban areas]. Cuernavaca, Mexico: Instituto Nacional de Salud Publica.Google Scholar
Dickerson, S. S., & Kemeny, M. E. (2004). Acute stressors and cortisol responses: A theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130, 355391.CrossRefGoogle ScholarPubMed
Donzella, B., Gunnar, M. R., Krueger, W. K., & Alwin, J. (2000). Cortisol and vagal tone responses to competitive challenge in preschoolers: Associations with temperament. Developmental Psychobiology, 37, 209220.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Duncan, G. J., & Brooks-Gunn, J. (1997). Income effects across the life span: Integration and interpretation. In Duncan, G. J. & Brooks-Gunn, J. (Eds.), Consequences of growing up poor (pp. 596610). New York: Russell Sage Foundation.Google Scholar
Essex, M. J., Klein, M. H., Cho, E., & Kalin, N. H. (2002). Maternal stress beginning in infancy may sensitize children to later stress exposure: Effects on cortisol and behavior. Biological Psychiatry, 52, 776784.CrossRefGoogle ScholarPubMed
Evans, G. W. (2003). A multimethodological analysis of cumulative risk and allostatic load among rural children. Developmental Psychology, 39, 924933.CrossRefGoogle ScholarPubMed
Evans, G. W., & English, K. (2002). The environment of poverty: Multiple stressor exposure, psychophysiological stress, and socioemotional adjustment. Child Development, 73, 12381248.CrossRefGoogle ScholarPubMed
Federenko, I., Wust, S., Hellhammer, D., Dechoux, R., Kumsta, R., & Kirschbaum, C. (2004). Free cortisol awakening responses are influenced by awakening time. Psychoneuroendocrinology, 29, 174184.CrossRefGoogle ScholarPubMed
Flinn, M. V., & England, B. G. (1995). Childhood stress and family environment. Current Anthropology, 36, 854866.CrossRefGoogle Scholar
Flinn, M. V., & England, B. G. (1997). Social economics of childhood glucocorticoid stress response and health. American Journal of Physical Anthropology, 102, 3353.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Fries, E., Hesse, J., Hellhammer, J., & Hellhammer, D. H. (2005). A new view on hypocortisolism. Psychoneuroendocrinology, 30, 10101016.CrossRefGoogle ScholarPubMed
Garde, A. H., & Hansen, Å. M. (2005). Long term stability of salivary cortisol. Scandinavian Journal of Clinical and Laboratory Investigation, 65, 433436.CrossRefGoogle ScholarPubMed
Goodman, S. H. (2003). Genesis and epigenesis of psychopathology in children with depressed mothers. In Cicchetti, D. & Walker, E. F. (Eds.), Neurodevelopmental mechanisms in psychopathology (pp. 428460). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Goodman, S. H., & Gotlib, I. H. (1999). Risk for psychopathology in the children of depressed mothers: A developmental model for understanding mechanisms of transmission. Psychological Review, 106, 458490.CrossRefGoogle ScholarPubMed
Gunnar, M. (2001). The role of glucocorticoids in anxiety disorders: A critical analysis. In Vassey, M. W. & Dadds, M. R. (Eds.), The developmental psychopathology of anxiety (pp. 143159). New York: Oxford University Press.CrossRefGoogle Scholar
Gunnar, M. R., & Davis, E. P. (2003). Stress and emotion in early childhood. In Lerner, R. M., Easterbrooks, M. A., & Mistry, J. (Eds.), Handbook of psychology: Vol. 6. Developmental psychology (pp. 113134). New York: Wiley.CrossRefGoogle Scholar
Gunnar, M. R., & Donzella, B. (2002). Social regulation of the cortisol levels in early human development. Psychoneuroendocrinology, 27, 199220.CrossRefGoogle ScholarPubMed
Gunnar, M. R., Morison, S. J., Chisholm, K., & Schuder, M. (2001). Salivary cortisol levels in children adopted from Romanian orphanages. Development and Psychopathology, 13, 611628.CrossRefGoogle ScholarPubMed
Gunnar, M. R., & Vazquez, D. M. (2001). Low cortisol and a flattening of expected daytime rhythm: Potential indices of risk in human development. Development and Psychopathology, 13, 515538.CrossRefGoogle Scholar
Gunnar, M. R., & Vazquez, D. M. (2006). Stress neurobiology and developmental psychopathology. In Cicchetti, D. & Cohen, D. J. (Eds.), Developmental psychopathology (2nd ed.). New York: Wiley.Google Scholar
Guthrie, J. F., & Morton, J. F. (1999). Diet-related knowledge, attitudes, and practices of low-income households with children. Journal of Early Education and Family Review, 6, 2633.Google Scholar
Halligan, S. L., Herbert, J., Goodyer, I. M., & Murray, L. (2004). Exposure to postnatal depression predicts elevated cortisol in adolescent offspring. Biological Psychiatry, 55, 376381.CrossRefGoogle ScholarPubMed
Heim, C., Ehlert, U., & Hellhammer, D. H. (2000). The potential role of hypocortisolism in the pathophysiology of stress-related bodily disorders. Psychoneuroendocrinology, 25, 135.CrossRefGoogle ScholarPubMed
Hertzman, C. (1999). Population health and human development. In Keating, D. & Hertzman, C. (Eds.), Developmental health and the wealth of nations: Social, biological and educational dynamics (pp. 2140). London: Guilford Press.Google Scholar
Hooper, S. R., Burchinal, M., Roberts, J. E., Zeisel, S., & Neebe, E. C. (1998). Social and family risk factors for infant development at one year: An application of the cumulative risk model. Journal of Applied Developmental Psychology, 19, 8596.CrossRefGoogle Scholar
Hsieh, C.-C., & Pugh, M. D. (1999). Poverty, income inequality, and violent crime: A meta-analysis of recent aggregate data studies. In Kawachi, I., Kennedy, B. P., & Wilkinson, R. G. (Eds.), Income inequality and health (pp. 278296). New York: New Press.Google Scholar
Jacobs, D. E., Clickner, R. P., Zhou, J. Y., Viet, S. M., Marker, D. A., Rogers, J. W., et al. (2002). The prevalence of lead-based paint hazards in U.S. housing. Environmental Health Perspectives, 110, A599A606.CrossRefGoogle ScholarPubMed
Kagan, J., Reznick, J. S., & Snidman, N. (1987). The physiology and psychology of behavioral inhibition in children. Child Development, 58, 14591473.CrossRefGoogle ScholarPubMed
Kahn, R. S., Wise, P. H., Kennedy, B. P., & Kawachi, I. (2000). State income inequality, household income, and maternal mental and physical health: Cross sectional national survey. British Medical Journal, 321, 13111315.CrossRefGoogle ScholarPubMed
Karns, J. T. (2001). Health, nutrition and safety. In Bremner, G. & Fogel, A. (Eds.), Handbook of infant development (pp. 693725). Malden, MA: Blackwell.Google Scholar
Kawachi, I., Kennedy, B. P., & Wilkinson, R. G. (Eds.). (1999). The society and population health reader: Vol. 1. Income inequality and health. New York: New Press.Google Scholar
Kirschbaum, C., & Hellhammer, D. H. (1989). Salivary cortisol in psychobiological research: An overview. Neuropsychobiology, 22, 150169.CrossRefGoogle ScholarPubMed
Koch, R., Lewis, M. T., & Quinones, W. (1998). Homeless: Mothering at rock bottom. In Coll, C. G. & Surrey, J. L. (Eds.), Mothering against the odds: Diverse voices of contemporary mothers (pp. 6184). New York: Guilford Press.Google Scholar
Kudielka, B. M., & Kirschbaum, C. (2003). Awakening cortisol responses are influenced by health status and awakening time but not by menstrual cycle phase. Psychoneuroendocrinology, 28, 3547.CrossRefGoogle Scholar
Lupien, S. J., King, S., Meaney, M. J., & McEwen, B. S. (2000). Child's stress hormone levels correlate with mother's socioeconomic status and depressive state. Biological Psychiatry, 48, 976980.CrossRefGoogle ScholarPubMed
Lupien, S. J., King, S., Meaney, M. J., & McEwen, B. S. (2001). Can poverty get under your skin? Basal cortisol levels and cognitive function in children from low and high socioeconomic status. Development and Psychopathology, 13, 653676.CrossRefGoogle ScholarPubMed
Marmot, M., & Wilkinson, R. G. (Eds.). (1999). Social determinants of health. New York: Oxford University Press.Google Scholar
Masten, W. G., Caldwell-Colbert, A. T., Alcala, S. J., & Mijares, B. E. (1986). Reliability and validity of the Center for Epidemiological Studies Depression Scale. Hispanic Journal of Behavioral Sciences, 8, 7784.CrossRefGoogle Scholar
McBurnett, K., Lahey, B. B., Rathouz, P. J., & Loeber, R. (2000). Low salivary cortisol and persistent aggression in boys referred for disruptive behavior. Archives of General Psychiatry, 57, 3843.CrossRefGoogle ScholarPubMed
McCormick, C. M., Smythe, J. W., Sharma, S., & Meaney, M. J. (1995). Sex-specific effects of prenatal stress on hypothalamic–pituitary–adrenal responses to stress and brain glucocorticoid receptor density in adult rats. Developmental Brain Research, 84, 5561.CrossRefGoogle ScholarPubMed
McEwen, B. (1998a). Stress, adaptation and disease: Allostasis and allostatic load. Annals of the New York Academy of Sciences, 840, 3344.CrossRefGoogle ScholarPubMed
McEwen, B. S. (1998b). Protective and damaging effects of stress mediators. New England Journal of Medicine, 338, 171179.CrossRefGoogle ScholarPubMed
Nachmias, M., Gunnar, M., Mangelsdorf, S., Parritz, R. H., & Buss, K. (1996). Behavioral inhibition and stress reactivity: The moderating role of attachment security. Child Development, 67, 508522.CrossRefGoogle ScholarPubMed
O'Connor, T. G., Ben-Shlomo, Y., Heron, J., Golding, J., Adams, D., & Glover, V. (2005). Prenatal anxiety predicts individual differences in cortisol in pre-adolescent children. Biological Psychiatry, 58, 211217.CrossRefGoogle ScholarPubMed
Owens, E. B., & Shaw, D. S. (2003). Poverty and early childhood adjustment. In Luthar, S. S. (Ed.), Resilience and vulnerability: Adaptation in the context of childhood adversities (pp. 267292). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Petterson, S. M., & Albers, A. B. (2001). Effects of poverty and maternal depression on early child development. Child Development 72, 17941813.CrossRefGoogle ScholarPubMed
Radke-Yarrow, M. (1998). Children of depressed mothers: From early childhood to maturity. Cambridge: Cambridge University Press.Google Scholar
Radloff, L. (1977). The CES-D scale: A self report depression scale for research in the general population. Applied Psychological Measurement, 1, 385401.CrossRefGoogle Scholar
Rahman, A., Iqbal, Z., Bunn, J., Lovel, H., & Harrington, R. (2004). Impact of maternal depression on infant nutritional status and illness: A cohort study. Archives of General Psychiatry, 61, 946952.CrossRefGoogle ScholarPubMed
Raison, C. L., & Miller, A. H. (2003). When not enough is too much: The role of insufficient glucocorticoid signaling in the pathophysiology of stress-related disorders. American Journal of Psychiatry, 160, 15541565.CrossRefGoogle ScholarPubMed
Raudenbush, S. W., & Bryk, A. S. (2002). Applications in the study of individual change. Hierarchical linear models: Applications and data analysis methods (pp. 160204). Thousand Oaks, CA: Sage.Google Scholar
Ronsaville, D. S., Municchi, G., Laney, C., Cizza, G., Meyer, S. E., Haim, A., et al. (2006). Maternal and environmental factors influence the hypothalamic–pituitary–adrenal axis response to corticotropin-releasing hormone infusion in offspring of mothers with or without mood disorders. Development and Psychopathology, 18, 173194.CrossRefGoogle ScholarPubMed
Rutter, M. (1979). Protective factors in children's responses to stress and disadvantage. In Kent, M. W. & Rolf, J. E., (Eds.), Primary prevention of psychopathology (pp. 4974). Hanover, NH: University Press of New England.Google Scholar
Salgado de Snyder, V. N., & Maldonado, M. (1994). Características psicométricas de la Escala de Depresión del Centro de Estudios Epidemiológicos en mujeres Mexicanas adultas de áreas rurales [Psychometric characteristics of the Center for Epidemiologic Studies Depression Scale in adult Mexican women from rural areas]. Salud Pública Mexico, 36, 200209.Google Scholar
Sameroff, A. J., Seifer, R., Baldwin, A., & Baldwin, C. (1993). Stability of intelligence from preschool to adolescence: The influence of social and family risk factors. Child Development, 64, 8097.CrossRefGoogle ScholarPubMed
Sameroff, A. J., Seifer, R., Barocas, R., Zax, M., & Greenspan, S. (1987). Intelligence quotient scores of 4-year-old children: Social–environmental risk factors. Pediatrics, 79, 343350.CrossRefGoogle ScholarPubMed
Sanchez, M. M., Aguado, F., Sanchez-Toscano, F., & Saphier, D. (1998). Neuroendocrine and immunocytochemical demonstrations of decreased hypothalamo–pituitary–adrenal axis responsiveness to restraint stress after long-term social isolation. Endocrinology, 139, 579587.CrossRefGoogle ScholarPubMed
Sanchez, M. M., Noble, P. M., Lyon, C. K., Plotsky, P. M., Davis, M., Nemeroff, C. B., et al. (2005). Alterations in diurnal cortisol rhythm and acoustic startle response in nonhuman primates with adverse rearing. Biological Psychiatry, 57, 373381.CrossRefGoogle ScholarPubMed
Sapolsky, R. M., Romero, L. M., & Munck, A. U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Review, 21, 5589.Google ScholarPubMed
Shonkoff, J. P., & Phillips, D. A. (Eds.). (2000). From neurons to neighborhoods: The science of early childhood. Development Committee on Integrating the Science of Early Childhood Development. Washington, DC: National Academy Press.Google Scholar
Singer, J. D. (1998). Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models. Journal of Educational and Behavioral Statistics, 24, 323355.CrossRefGoogle Scholar
Spangler, G. (1995). School performance, Type A behavior and adrenocortical activity in primary school children. Anxiety, Stress, and Coping, 8, 299310.CrossRefGoogle Scholar
Sullivan, R. M., & Gratton, A. (2002). Prefrontal cortical regulation of hypothalamic–pituitary–adrenal function in the rat and implications for psychopathology: Side matters. Psychoneuroendocrinology, 27, 99114.CrossRefGoogle ScholarPubMed
Tennes, K., & Kreye, M. (1985). Children's adrenocortical responses to classroom activities and tests in elementary school. Psychosomatic Medicine, 47, 451460.CrossRefGoogle ScholarPubMed
Tsuang, M. T., & Faraone, S. V. (1990). The genetics of mood disorders. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Wagstaff, A., Bustreo, G., Bryce, J., Claeson, M., & WHO. (2004). Child health: Reaching the poor. American Journal of Public Health, 94, 726736.CrossRefGoogle ScholarPubMed
Wailoo, M. P., Westaway, J. A., Joseph, D., Petersen, S. A., Davies, T., & Thompson, J. R. (2003). Overnight deep body temperature and urinary cortisol excretion in infants from economically deprived areas. Child Care Health and Development, 29, 473480.CrossRefGoogle ScholarPubMed
Wamboldt, F. S., Ho, J., Milgrom, H., Wamboldt, M. Z., Sanders, B., Szefler, S. J., & Bender, B. G. (2002). Prevalence and correlates of household exposures to tobacco smoke and pets in children with asthma. Journal of Pediatrics, 141, 109115.CrossRefGoogle ScholarPubMed