Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-22T15:16:04.529Z Has data issue: false hasContentIssue false

Father absence, age at menarche, and genetic confounding: A replication and extension using a polygenic score

Published online by Cambridge University Press:  27 October 2020

Gabriel L. Schlomer*
Affiliation:
Division of Educational Psychology and Methodology, University at Albany, SUNY, Albany, NY, USA
Kristine Marceau
Affiliation:
Human Development and Family Studies, Purdue University, West Lafayette, IN, USA
*
Author for Correspondence: Division of Educational Psychology and Methodology, University at Albany, SUNY, 244 Education Building, Albany, NY, USA; E-mail: Gschlomer@albany.edu.

Abstract

Father absence has a small but robust association with earlier age at menarche (AAM), likely reflecting both genetic confounding and an environmental influence on life history strategy development. Studies that have attempted to disambiguate genetic versus environmental contributions to this association have shown conflicting findings, though genomic-based studies have begun to establish the role of gene–environment interplay in the father absence/AAM literature. The purpose of this study was to replicate and extend prior genomic work using the Avon Longitudinal Study of Parents and Children (ALSPAC), a prospective longitudinal cohort study (N = 2,685), by (a) testing if an AAM polygenic score (PGS) could account for the father absence/AAM association, (b) replicating G×E research on lin-28 homolog B (LIN28B) variation and father absence, and (c) testing the G×E hypothesis using the PGS. Results showed that the PGS could not explain the father absence/AAM association and there was no interaction between father absence and the PGS. Findings using LIN28B largely replicated prior work that showed LIN28B variants predicted later AAM in father-present girls, but this AAM-delaying effect was absent or reversed in father-absent girls. Findings are discussed in terms genetic confounding, the unique biological role of LIN28B, and using PGSs for G×E tests.

Type
Regular Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aliev, F., Latendresse, S. J., Bacanu, S. A., Neale, M. C., & Dick, D. M. (2014). Testing for measured gene-environment interaction: Problems with the use of cross-product terms and a regression model reparameterization solution. Behavior Genetics, 44, 165181. doi:10.1007/s10519-014-9642-1CrossRefGoogle Scholar
Aylwin, C. F., Toro, C. A., Shirtcliff, E., & Lomniczi, A. (2019). Emerging genetic and epigenetic mechanisms underlying pubertal maturation in adolescence. Journal of Research on Adolescence, 29, 5479. doi:10.1111/jora.12385CrossRefGoogle ScholarPubMed
Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2015). The hidden efficacy of interventions: Gene × environment experiments from a differential susceptibility perspective. Annual Review of Psychology, 66, 381409. doi:10.1146/annurev-psych-010814-015407CrossRefGoogle Scholar
Barbaro, N., Boutwell, B. B., Barnes, J. C., & Shackelford, T. K. (2017). Genetic confounding of the relationship between father absence and age at menarche. Evolution and Human Behavior, 38, 357365. doi:10.1016/j.evolhumbehav.2016.11.007CrossRefGoogle Scholar
Belsky, J. (2012). The development of human reproductive strategies. Current Directions in Psychological Science, 21, 310316. doi:10.1177/0963721412453588CrossRefGoogle Scholar
Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2007). For better and for worse: Differential susceptibility to environmental influences. Current Directions in Psychological Science, 16, 300304. doi:10.1111/j.1467-8721.2007.00525.xCrossRefGoogle Scholar
Belsky, D. W., & Israel, S. (2014). Integrating genetics and social science: Genetic risk scores. Biodemography and Social Biology, 60, 137155. doi:10.1080/19485565.2014.946591CrossRefGoogle ScholarPubMed
Belsky, J., & Pluess, M. (2009). Beyond diathesis stress: Differential susceptibility to environmental influences. Psychological Bulletin, 135, 885908.CrossRefGoogle ScholarPubMed
Belsky, J., Ruttle, P. L., Boyce, W. T., Armstrong, J. M., & Essex, M. J. (2015). Early adversity, elevated stress physiology, accelerated sexual maturation, and poor health in females. Developmental Psychology, 51, 816822. doi:10.1037/dev0000017CrossRefGoogle ScholarPubMed
Belsky, J., Steinberg, L., & Draper, P. (1991). Childhood experience, interpersonal development, and reproductive strategy: An evolutionary theory of socialization. Child Development, 62, 647670. doi:10.1111/j.1467-8624.1991.tb01558.xCrossRefGoogle ScholarPubMed
Birchler, J. A., Yao, H., & Chudalayandi, S. (2006). Unraveling the genetic basis of hybrid vigor. Proceedings of the National Academy of Sciences of the United States of America, 103, 1295712958. doi:10.1073/pnas.0605627103CrossRefGoogle ScholarPubMed
Boyd, A., Golding, J., Macleod, J., Lawlor, D. A., Fraser, A., Henderson, J., … Davey Smith, G. (2013). Cohort Profile: the ‘children of the 90s’: the index offspring of the Avon Longitudinal Study of Parents and Children. International Journal of Epidemiology, 42, 111127. doi:10.1093/ije/dys064CrossRefGoogle ScholarPubMed
Boynton-Jarrett, R., & Harville, E. W. (2012). A prospective study of childhood social hardships and age at menarche. Annals of Epidemiology, 22, 731737. doi:10.1016/j.annepidem.2012.08.005CrossRefGoogle ScholarPubMed
Buck Louis, G. M., Yeung, E., Sundaram, R., Laughon, S. K., & Zhang, C. (2013). The exposome--exciting opportunities for discoveries in reproductive and perinatal epidemiology. Paediatric and Perinatal Epidemiology, 27, 229236. doi:10.1111/ppe.12040CrossRefGoogle ScholarPubMed
Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1, 245276.CrossRefGoogle ScholarPubMed
Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., & Lee, J. J. (2015). Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience, 4, 7. doi:10.1186/s13742-015-0047-8CrossRefGoogle Scholar
Comings, D. E., Muhleman, D., Johnson, J. P., & MacMurray, J. P. (2002). Parent-daughter transmission of the androgen receptor gene as an explanation of the effect of father absence on age of menarche. Child Development, 73, 10461051.CrossRefGoogle ScholarPubMed
Conley, D., Laidley, T. M., Boardman, J. D., & Domingue, B. W. (2016). Changing polygenic penetrance on phenotypes in the 20(th) century among adults in the US population. Scientific Reports, 6, 30348. doi:10.1038/srep30348CrossRefGoogle ScholarPubMed
Consortium, I. S. (2009). Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature, 460, 748752. doi:10.1038/nature08185Google Scholar
Corre, C., Shinoda, G., Zhu, H., Cousminer, D. L., Crossman, C., Bellissimo, C., … Palmert, M. R. (2016). Sex-specific regulation of weight and puberty by the Lin28/let-7 axis. Journal of Endocrinology, 228, 179191. doi:10.1530/JOE-15-0360CrossRefGoogle ScholarPubMed
Culpin, I., Heron, J., Araya, R., Melotti, R., Lewis, G., & Joinson, C. (2014). Father absence and timing of menarche in adolescent girls from a UK cohort: The mediating role of maternal depression and major financial problems. Journal of Adolescence, 37, 291301. doi:10.1016/j.adolescence.2014.02.003CrossRefGoogle ScholarPubMed
Culverhouse, R. C., Saccone, N. L., Horton, A. C., Ma, Y., Anstey, K. J., Banaschewski, T., … Bierut, L. J. (2018). Collaborative meta-analysis finds no evidence of a strong interaction between stress and 5-HTTLPR genotype contributing to the development of depression. Molecular Psychiatry, 23, 133142. doi:10.1038/mp.2017.44CrossRefGoogle Scholar
D'Agostino, R. B., & Russell, H. K. (2005). Scree test. In Armitage, P. & Colton, T. (Eds.), Encyclopedia of biostatistics (2nd ed, pp. 47904793). Chichester, England: John Wiley & Sons.Google Scholar
Day, F. R., Thompson, D. J., Helgason, H., Chasman, D. I., Finucane, H., Sulem, P., … Perry, J. R. B. (2017). Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk. Nature Genetics, 49, 834841. doi:10.1038/ng.3841CrossRefGoogle ScholarPubMed
Dick, D. M., Agrawal, A., Keller, M. C., Adkins, A., Aliev, F., Monroe, S., … Sher, K. J. (2015). Candidate gene-environment interaction research: Reflections and recommendations. Perspectives on Psychological Science, 10, 3759. doi:10.1177/1745691614556682CrossRefGoogle ScholarPubMed
D'Onofrio, B. M., & Lahey, B. B. (2010). Biosocial influences on the family: A decade review. Journal of Marriage and Family, 72, 762782. doi:10.1111/j.1741-3737.2010.00729.xCrossRefGoogle ScholarPubMed
Draper, P., & Harpending, H. (1982). Father absence and reproductive strategy: An evolutionary perspective. Journal of Anthropological Research, 38, 255273.CrossRefGoogle Scholar
Dudbridge, F. (2013). Power and predictive accuracy of polygenic risk scores. PLoS Genetics, 9, e1003348. doi:10.1371/journal.pgen.1003348CrossRefGoogle ScholarPubMed
Duncan, L. E., Pollastri, A. R., & Smoller, J. W. (2014). Mind the gap: Why many geneticists and psychological scientists have discrepant views about gene-environment interaction (GxE) research. American Psychologist, 69, 249268. doi:10.1037/a0036320CrossRefGoogle ScholarPubMed
Ellis, B. J. (2004). Timing of pubertal maturation in girls: An integrated life history approach. Psychological Bulletin, 130, 920958. doi:10.1037/0033-2909.130.6.920CrossRefGoogle ScholarPubMed
Ellis, B. J., Boyce, W. T., Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2011). Differential susceptibility to the environment: An evolutionary--neurodevelopmental theory. Development and Psychopathology, 23, 728. doi:10.1017/S0954579410000611CrossRefGoogle Scholar
Ellis, B. J., Essex, M. J., & Boyce, W. T. (2005). Biological sensitivity to context: II. Emperical explorations of an evolutionary-developmental theory. Development and Psychopathology, 17, 303328. doi:10.10170S0954579405050157CrossRefGoogle Scholar
Ellis, B. J., Figueredo, A. J., Brumbach, B. H., & Schlomer, G. L. (2009). Fundamental dimensions of environmental risk: The Impact of harsh versus unpredictable environments on the evolution and development of life history strategies. Human Nature, 20, 204268. doi:10.1007/s12110-009-9063-7CrossRefGoogle ScholarPubMed
Ellis, B. J., & Garber, J. (2000). Psychosocial antecedents of variation in girls’ pubertal timing: Maternal depression, stepfather presence, and marital and family stress. Child Development, 71, 485501.CrossRefGoogle ScholarPubMed
Ellis, B. J., Schlomer, G. L., Tilley, E. H., & Butler, E. A. (2012). Impact of fathers on risky sexual behavior in daughters: A genetically and environmentally controlled sibling study. Development and Psychopathology, 24, 317332. doi:10.1017/S095457941100085XCrossRefGoogle ScholarPubMed
Essex, M. J., Klein, M. H., Cho, E., & Kalin, N. H. (2002). Maternal stress beginning in infancy may sensitize children to later stress exposure: Effects on cortisol and behavior. Biological Psychiatry, 52, 776784. doi:10.1016/S0006-3223(02)01553-6CrossRefGoogle ScholarPubMed
Evans, D. M., Visscher, P. M., & Wray, N. R. (2009). Harnessing the information contained within genome-wide association studies to improve individual prediction of complex disease risk. Human Molecular Genetics, 18, 35253531. doi:10.1093/hmg/ddp295CrossRefGoogle ScholarPubMed
Fisher, R. A. (1918). The correlation between relatives on the supposition of mendelian inheritance. Transactions of the Royal Society of Edinbergh, 53, 399433.Google Scholar
Fraser, A., Macdonald-Wallis, C., Tilling, K., Boyd, A., Golding, J., Davey Smith, G., … Lawlor, D. A. (2013). Cohort Profile: The avon longitudinal study of parents and children: ALSPAC mothers cohort. International Journal of Epidemiology, 42, 97110. doi:10.1093/ije/dys066CrossRefGoogle ScholarPubMed
Frazier, P. A., Tix, A. P., & Barron, K. E. (2004). Testing moderator and mediator effects in counseling psychology research. Journal of Counseling Psychology, 51, 115134. doi:10.1037/0022-0167.51.1.115CrossRefGoogle Scholar
Gaydosh, L., Belsky, D. W., Domingue, B. W., Boardman, J. D., & Harris, K. M. (2018). Father absence and accelerated reproductive development in non-Hispanic white women in the United States. Demography, 55, 12451267. doi:10.1007/s13524-018-0696-1CrossRefGoogle ScholarPubMed
Gong, T. T., Wu, Q. J., Vogtmann, E., Lin, B., & Wang, Y. L. (2013). Age at menarche and risk of ovarian cancer: A meta-analysis of epidemiological studies. International Journal of Cancer, 132, 28942900. doi:10.1002/ijc.27952CrossRefGoogle ScholarPubMed
Hall, M. A., Dudek, S. M., Goodloe, R., Crawford, D. C., Pendergrass, S. A., Peissig, P., … Ritchie, M. D. (2014). Environment-wide association study (EWAS) for type-2 diabetes in the Marshfield Personalized Medicine Research Project Biobank. Paper presented at the Pacific Symposium on Biocomputing.Google Scholar
Hartman, S., Widaman, K. F., & Belsky, J. (2015). Genetic moderation of effects of maternal sensitivity on girl's age of menarche: Replication of the Manuck et al. study. Development and Psychopathology, 27, 747756. doi:10.1017/S0954579414000856CrossRefGoogle ScholarPubMed
Horvath, G., Knopik, V. S., & Marceau, K. (2019). Polygenic influences on pubertal timing and tempo and depressive symptoms in boys and girls. Journal of Research on Adolescence, 30, 7894. doi:10.1111/jora.12502CrossRefGoogle ScholarPubMed
Ioannidis, J. P. (2005). Why most published research findings are false. PLoS Medicine, 2, e124. doi:10.1371/journal.pmed.0020124CrossRefGoogle ScholarPubMed
Jaffee, S. R., & Price, T. S. (2007). Gene-environment correlations: A review of the evidence and implications for prevention of mental illness. Molecular Psychiatry, 12, 432442. doi:10.1038/sj.mp.4001950CrossRefGoogle ScholarPubMed
James, J., Ellis, B. J., Schlomer, G. L., & Garber, J. (2012). Sex-specific pathways to early puberty, sexual debut, and sexual risk taking: Tests of an integrated evolutionary-developmental model. Developmental Psychology, 48, 687702. doi:10.1037/a0026427CrossRefGoogle ScholarPubMed
Jones, H. J., Stergiakouli, E., Tansey, K. E., Hubbard, L., Heron, J., Cannon, M., … Zammit, S. (2016). Phenotypic manifestation of genetic risk for schizophrenia during adolescence in the general population. JAMA Psychiatry, 73, 221228. doi:10.1001/jamapsychiatry.2015.3058CrossRefGoogle ScholarPubMed
Jorm, A. F., Christensen, H., Rodgers, B., Jacomb, P. A., & Easteal, S. (2004). Association of adverse childhood experiences, age of menarche, and adult reproductive behavior: Does the androgen receptor gene play a role? American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 125B, 105111. doi:10.1002/ajmg.b.20114CrossRefGoogle ScholarPubMed
Kyweluk, M. A., Georgiev, A. V., Borja, J. B., Gettler, L. T., & Kuzawa, C. W. (2018). Menarcheal timing is accelerated by favorable nutrition but unrelated to developmental cues of mortality or familial instability in Cebu, Philippines. Evolution and Human Behavior, 39, 7681. doi:10.1016/j.evolhumbehav.2017.10.002CrossRefGoogle Scholar
Leinonen, J. T., Chen, Y. C., Tukiainen, T., Panula, P., & Widen, E. (2019). Transient modification of lin28b expression - Permanent effects on zebrafish growth. Molecular and Cellular Endocrinology, 479, 6170. doi:10.1016/j.mce.2018.09.001CrossRefGoogle ScholarPubMed
Lohmueller, K. E., Pearce, C. L., Pike, M., Lander, E. S., & Hirschhorn, J. N. (2003). Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nature Genetics, 33, 177182. doi:10.1038/ng1071CrossRefGoogle ScholarPubMed
Mackrell, S. V., Sheikh, H. I., Kotelnikova, Y., Kryski, K. R., Jordan, P. L., Singh, S. M., & Hayden, E. P. (2014). Child temperament and parental depression predict cortisol reactivity to stress in middle childhood. Journal of Abnormal Psychology, 123, 106116. doi:10.1037/a0035612CrossRefGoogle ScholarPubMed
Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., … Visscher, P. M. (2009). Finding the missing heritability of complex diseases. Nature, 461, 747753. doi:10.1038/nature08494CrossRefGoogle ScholarPubMed
Manuck, S. B., Craig, A. E., Flory, J. D., Halder, I., & Ferrell, R. E. (2011). Reported early family environment covaries with menarcheal age as a function of polymorphic variation in estrogen receptor-alpha. Development and Psychopathology, 23, 6983. doi:10.1017/S0954579410000659CrossRefGoogle ScholarPubMed
Mendle, J., Turkheimer, E., D'Onofrio, B. M., Lynch, S. K., Emery, R. E., Slutske, W. S., & Martin, N. G. (2006). Family structure and age at menarche: A children-of-twins approach. Developmental Psychology, 42, 533542. doi:10.1037/0012-1649.42.3.533CrossRefGoogle ScholarPubMed
Moss, E. G., & Tang, L. (2003). Conservation of the heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites. Developmental Biology, 258, 432442. doi:10.1016/s0012-1606(03)00126-xCrossRefGoogle ScholarPubMed
Mrug, S., Elliott, M. N., Davies, S., Tortolero, S. R., Cuccaro, P., & Schuster, M. A. (2014). Early puberty, negative peer influence, and problem behaviors in adolescent girls. Pediatrics, 133, 714. doi:10.1542/peds.2013-0628CrossRefGoogle ScholarPubMed
Muthen, L. K., & Muthen, B. (1998–2015). Mplus userֹ's guide (7th ed.). Los Angles, CA: Muthen & Muthen.Google Scholar
Okbay, A., Beauchamp, J. P., Fontana, M. A., Lee, J. J., Pers, T. H., Rietveld, C. A., … Benjamin, D. J. (2016). Genome-wide association study identifies 74 loci associated with educational attainment. Nature, 533, 539542. doi:10.1038/nature17671CrossRefGoogle ScholarPubMed
Pasquinelli, A. E., Reinhart, B. J., Slack, F., Martindale, M. Q., Kuroda, M. I., Maller, B., … Ruvkun, G. (2000). Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 408, 8689. doi:10.1038/35040556CrossRefGoogle ScholarPubMed
Patel, C. J., Bhattacharya, J., & Butte, A. J. (2010). An environment-wide association study (EWAS) on type 2 diabetes mellitus. PloS One, 5, e10746. doi:10.1371/journal.pone.0010746CrossRefGoogle ScholarPubMed
Pembrey, M. (2004). The Avon Longitudinal Study of Parents and Children (ALSPAC): A resource for genetic epidemiology. European Journal of Endrocrinology, 151, U125U129. doi:10.1530/eje.0.151u125CrossRefGoogle ScholarPubMed
Plant, T. M. (2001). Neurobiological bases underlying the control of the onset of puberty in the rhesus monkey: A representative higher primate. Frontiers in Neuroendocrinology, 22, 107139. doi:10.1006/frne.2001.0211CrossRefGoogle ScholarPubMed
Pluess, M., & Belsky, J. (2013). Vantage sensitivity: Individual differences in response to positive experiences. Psychological Bulletin, 139, 901916. doi:10.1037/a0030196CrossRefGoogle ScholarPubMed
Prentice, P., & Viner, R. M. (2013). Pubertal timing and adult obesity and cardiometabolic risk in women and men: A systematic review and meta-analysis. International Journal of Obesity, 37, 10361043. doi:10.1038/ijo.2012.177CrossRefGoogle ScholarPubMed
Richardson, G. B., La Guardia, A. C., & Klay, P. M. (2018). Determining the roles of father absence and age at menarche in female psychosocial acceleration. Evolution and Human Behavior, 39, 437446. doi:10.1016/j.evolhumbehav.2018.03.009CrossRefGoogle Scholar
Rowe, D. C. (2002). On genetic variation in menarche and age at first sexual intercourse: A critique of the Belsky-Draper hypothesis. Evolution and Human Behavior, 23, 365372. doi:10.1016/S1090-5138(02)00102-2CrossRefGoogle Scholar
Rutter, M., Dunn, J., Plomin, R., Simonoff, E., Pickles, A., Maughan, B., … Eaves, L. (1997). Integrating nature and nurture: Implications of person-environment correlations and interactions for developmental psychopathology. Development and Psychopathology, 9, 335364. doi:10.1017/s0954579497002083CrossRefGoogle ScholarPubMed
Sangiao-Alvarellos, S., Manfredi-Lozano, M., Ruiz-Pino, F., Navarro, V. M., Sanchez-Garrido, M. A., Leon, S., … Tena-Sempere, M. (2013). Changes in hypothalamic expression of the Lin28/let-7 system and related microRNAs during postnatal maturation and after experimental manipulations of puberty. Endocrinology, 154, 942955. doi:10.1210/en.2012-2006CrossRefGoogle ScholarPubMed
Schlomer, G. L., & Cho, H.-J. (2017). Genetic and environmental contributions to age at menarche: Interactive effects of father absence and LIN28B. Evolution and Human Behavior, 38, 761769. doi:10.1016/j.evolhumbehav.2017.06.002CrossRefGoogle Scholar
Schlomer, G. L., Murray, J., Yates, B., Hair, K., & Vandenbergh, D. J. (2019). Father absence, age at menarche, and sexual behaviors in women: Evaluating the genetic confounding hypothesis using the androgen receptor gene. Evolutionary Behavioral Sciences, 13, 205222. doi:10.1037/ebs0000137CrossRefGoogle Scholar
Skoog, T., Bayram Ozdemir, S., & Stattin, H. (2016). Understanding the link between pubertal timing in girls and the development of depressive symptoms: The role of sexual harassment. Journal of Youth and Adolescence, 45, 316327. doi:10.1007/s10964-015-0292-2CrossRefGoogle ScholarPubMed
Sohn, K. (2017). The null relation between father absence and earlier menarche. Human Nature, 28, 407422. doi:10.1007/s12110-017-9299-6CrossRefGoogle ScholarPubMed
Tchuenche, J. M. (2007). Theoretical population dynamics model of a genetically transmitted disease: Sickle-cell anaemia. Bulletin of Mathematical Biology, 69, 699730. doi:10.1007/s11538-006-9148-yCrossRefGoogle ScholarPubMed
Thornton, J. E., & Gregory, R. I. (2012). How does Lin28 let-7 control development and disease? Trends in Cell Biology, 22, 474482. doi:10.1016/j.tcb.2012.06.001CrossRefGoogle ScholarPubMed
Tither, J. M., & Ellis, B. J. (2008). Impact of fathers on daughters’ age at menarche: A genetically and environmentally controlled sibling study. Developmental Psychology, 44, 14091420. doi:10.1037/a0013065CrossRefGoogle ScholarPubMed
Vrijheid, M., Slama, R., Robinson, O., Chatzi, L., Coen, M., van den Hazel, P., … Nieuwenhuijsen, M. J. (2014). The human early-life exposome (HELIX): Project rationale and design. Environmental Health Perspectives, 122, 535544. doi:10.1289/ehp.1307204CrossRefGoogle ScholarPubMed
Webster, G. D., Graber, J. A., Gesselman, A. N., Crosier, B. S., & Orozco Schember, T. (2014). Life history theory of father absence and menarche: A meta-analysis. Evolutionary Psychology, 12, 273294.CrossRefGoogle ScholarPubMed
Widaman, K. F., Helm, J. L., Castro-Schilo, L., Pluess, M., Stallings, M. C., & Belsky, J. (2012). Distinguishing ordinal and disordinal interactions. Psychological Methods, 17, 615622. doi:10.1037/a0030003CrossRefGoogle ScholarPubMed
Wild, C. P. (2005). Complementing the genome with an “exposome”: The outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiology, Biomarkers & Prevention, 14, 18471850. doi:10.1158/1055-9965.EPI-05-0456CrossRefGoogle ScholarPubMed
Wray, N. R., Lee, S. H., Mehta, D., Vinkhuyzen, A. A., Dudbridge, F., & Middeldorp, C. M. (2014). Research review Polygenic methods and their application to psychiatric traits. Journal of Child Psychology and Psychiatry and Allied Disciplines, 55, 10681087. doi:10.1111/jcpp.12295CrossRefGoogle ScholarPubMed
Zhu, H., Shah, S., Shyh-Chang, N., Shinoda, G., Einhorn, W. S., Viswanathan, S. R., … Daley, G. Q. (2010). Lin28a transgenic mice manifest size and puberty phenotypes identified in human genetic association studies. Nature Genetics, 42, 626630. doi:10.1038/ng.593CrossRefGoogle ScholarPubMed