Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-rq6d8 Total loading time: 0.183 Render date: 2021-09-24T19:50:49.825Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

On admissible tensor products in p-adic Hodge theory

Published online by Cambridge University Press:  14 February 2013

Giovanni Di Matteo*
Affiliation:
UMPA ENS de Lyon, UMR 5669 du CNRS, Université de Lyon, France (email: giovanni.di.matteo@ens-lyon.fr)
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove that if W and W′ are non-zero B-pairs whose tensor product is crystalline (or semi-stable or de Rham or Hodge–Tate), then there exists a character μ such that W(μ−1) and W′(μ) are crystalline (or semi-stable or de Rham or Hodge–Tate). We also prove that if W is a B-pair and if F is a Schur functor (for example Sym n or Λn) such that F(W) is crystalline (or semi-stable or de Rham or Hodge–Tate) and if the rank of W is sufficiently large, then there is a character μ such that W(μ−1) is crystalline (or semi-stable or de Rham or Hodge–Tate). In particular, these results apply to p-adic representations.

MSC classification

Type
Research Article
Copyright
Copyright © 2013 The Author(s)

References

[And02]André, Y., Représentations galoisiennes et opérateurs de Bessel p-adiques, Ann. Inst. Fourier (Grenoble) 52 (2002), 779808.CrossRefGoogle Scholar
[Ber02]Berger, L., Représentations p-adiques et équations différentielles, Invent. Math. 148 (2002), 219284.CrossRefGoogle Scholar
[Ber08]Berger, L., Construction de (φ,Γ)-modules: représentations p-adiques et B-paires, Algebra Number Theory 2 (2008), 91120.CrossRefGoogle Scholar
[BC10]Berger, L. and Chenevier, G., Représentations potentiellement triangulines de dimension 2, J. Théor. Nombres Bordeaux 22 (2010), 557574.CrossRefGoogle Scholar
[Col93]Colmez, P., Périodes des variétés abéliennes à multiplication complexe, Ann. of Math. (2) 138 (1993), 625683.CrossRefGoogle Scholar
[Fon94a]Fontaine, J.-M., Le corps des périodes p-adiques. Avec un appendice par Pierre Colmez: Les nombres algébriques sont denses dans B +dR, Astérisque 223 (1994), 59111.Google Scholar
[Fon94b]Fontaine, J.-M., Représentations p-adiques semi-stables, Astérisque 223 (1994), 113184.Google Scholar
[Fon04]Fontaine, J.-M., Arithmétique des représentations galoisiennes p-adiques, Cohomologies p-adiques et applications arithmétiques (III), Astérisque 295 (2004), 1115.Google Scholar
[Ful97]Fulton, W., Young tableaux. With applications to representation theory and geometry, London Mathematical Society Student Texts, vol. 35 (Cambridge University Press, Cambridge, 1997).Google Scholar
[Ked04]Kedlaya, K., A p-adic local monodromy theorem, Ann. of Math. (2) 160 (2004), 93184.CrossRefGoogle Scholar
[Meb02]Mebkhout, Z., Analogue p-adique du théorème de Turrittin et le théorème de la monodromie p-adique, Invent. math. 148 (2002), 319351.CrossRefGoogle Scholar
[Nak09]Nakamura, K., Classification of two-dimensional split trianguline representations of p-adic fields, Compos. Math. 145 (2009), 865914.CrossRefGoogle Scholar
[Sen80]Sen, S., Continuous cohomology and p-adic Galois representations, Invent. Math. 62 (1980), 89116.CrossRefGoogle Scholar
[Ski09]Skinner, C., A note on the p-adic Galois representations attached to Hilbert modular forms, Doc. Math. 14 (2009), 241258.Google Scholar
[Win95]Wintenberger, J.-P., Relèvement selon une isogénie de systèmes -adiques de représentations galoisiennes associés aux motifs, Invent. math. 120 (1995), 215240.CrossRefGoogle Scholar
[Win97]Wintenberger, J.-P., Propriétés du groupe tannakien des structures de Hodge p-adiques et torseur entre cohomologies cristalline et étale, Ann. Inst. Fourier (Grenoble) 47 (1997), 12891334.CrossRefGoogle Scholar
You have Access
3
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

On admissible tensor products in p-adic Hodge theory
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

On admissible tensor products in p-adic Hodge theory
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

On admissible tensor products in p-adic Hodge theory
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *