Skip to main content Accessibility help
×
Home
Hostname: page-component-8bbf57454-w5vlw Total loading time: 0.225 Render date: 2022-01-24T01:12:07.587Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Equivariant homology and K-theory of affine Grassmannians and Toda lattices

Published online by Cambridge University Press:  21 April 2005

Roman Bezrukavnikov
Affiliation:
Department of Mathematics, Northwestern University, Evanston, IL 60208, USAbezrukav@math.northwestern.edu
Michael Finkelberg
Affiliation:
Independent Moscow University, 11 Bolshoj Vlasjevskij Pereulok, Moscow 119002, Russiafnklberg@mccme.ru
Ivan Mirković
Affiliation:
Department of Mathematics, The University of Massachusetts, Amherst, MA 01003, USAmirkovic@math.umass.edu
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For an almost simple complex algebraic group G with affine Grassmannian $\text{Gr}_G=G(\mathbb{C}(({\rm t})))/G(\mathbb{C}[[{\rm t}]])$, we consider the equivariant homology $H^{G(\mathbb{C}[[{\rm t}]])}(\text{Gr}_G)$ and K-theory $K^{G(\mathbb{C}[[{\rm t}]])}(\text{Gr}_G)$. They both have a commutative ring structure with respect to convolution. We identify the spectrum of homology ring with the universal group-algebra centralizer of the Langlands dual group $\check G$, and we relate the spectrum of K-homology ring to the universal group-group centralizer of G and of $\check G$. If we add the loop-rotation equivariance, we obtain a noncommutative deformation of the (K-)homology ring, and thus a Poisson structure on its spectrum. We relate this structure to the standard one on the universal centralizer. The commutative subring of $G(\mathbb{C}[[{\rm t}]])$-equivariant homology of the point gives rise to a polarization which is related to Kostant's Toda lattice integrable system. We also compute the equivariant K-ring of the affine Grassmannian Steinberg variety. The equivariant K-homology of GrG is equipped with a canonical basis formed by the classes of simple equivariant perverse coherent sheaves. Their convolution is again perverse and is related to the Feigin–Loktev fusion product of $G(\mathbb{C}[[{\rm t}]])$-modules.

Type
Research Article
Copyright
Foundation Compositio Mathematica 2005
You have Access
24
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Equivariant homology and K-theory of affine Grassmannians and Toda lattices
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Equivariant homology and K-theory of affine Grassmannians and Toda lattices
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Equivariant homology and K-theory of affine Grassmannians and Toda lattices
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *