Hostname: page-component-7bb8b95d7b-495rp Total loading time: 0 Render date: 2024-09-11T12:19:35.107Z Has data issue: true hasContentIssue false

Cyclic base change of cuspidal automorphic representations over function fields

Published online by Cambridge University Press:  11 September 2024

Gebhard Böckle
Affiliation:
Interdisciplinary Center for Scientific Computing, Universität Heidelberg, 69120 Heidelberg, Germany gebhard.boeckle@iwr.uni-heidelberg.de
Tony Feng
Affiliation:
Department of Mathematics, University of California at Berkeley, Berkeley, CA 94720, USA fengt@berkeley.edu
Michael Harris
Affiliation:
Department of Mathematics, Columbia University, New York, NY 10027, USA harris@math.columbia.edu
Chandrashekhar B. Khare
Affiliation:
Department of Mathematics, UCLA, Los Angeles, USA shekhar@math.ucla.edu
Jack A. Thorne
Affiliation:
Department of Pure Mathematics and Mathematical Statistics, Wilberforce Road, Cambridge, UK thorne@dpmms.cam.ac.uk

Abstract

Let $G$ be a split semisimple group over a global function field $K$. Given a cuspidal automorphic representation $\Pi$ of $G$ satisfying a technical hypothesis, we prove that for almost all primes $\ell$, there is a cyclic base change lifting of $\Pi$ along any $\mathbb {Z}/\ell \mathbb {Z}$-extension of $K$. Our proof does not rely on any trace formulas; instead it is based on using modularity lifting theorems, together with a Smith theory argument, to obtain base change for residual representations. As an application, we also prove that for any split semisimple group $G$ over a local function field $F$, and almost all primes $\ell$, any irreducible admissible representation of $G(F)$ admits a base change along any $\mathbb {Z}/\ell \mathbb {Z}$-extension of $F$. Finally, we characterize local base change more explicitly for a class of toral representations considered in work of Chan and Oi.

Type
Research Article
Copyright
© The Author(s), 2024. The publishing rights in this article are licensed to Foundation Compositio Mathematica under an exclusive licence

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achar, P., Perverse sheaves and applications to representation theory, Mathematical Surveys and Monographs, vol. 258 (American Mathematical Society, Providence, RI, 2021).Google Scholar
Arias-de Reyna, S. and Böckle, G., Deformation rings and images of Galois representations, Preprint, arXiv:2107.03114.Google Scholar
Arthur, J. and Clozel, L., Simple algebras, base change, and the advanced theory of the trace formula, Annals of Mathematics Studies, vol. 120 (Princeton University Press, Princeton, NJ, 1989).Google Scholar
Barnet-Lamb, T., Gee, T., Geraghty, D. and Taylor, R., Potential automorphy and change of weight, Ann. of Math. (2) 179 (2014), 501609.Google Scholar
Beilinson, A. A., Bernstein, J. and Deligne, P., Faisceaux pervers (French) [Perverse sheaves], in Analysis and topology on singular spaces, vol. I (Luminy, 1981), Astérisque, vol. 100 (Société Mathématique de France, Paris, 1982), 5171.Google Scholar
Böckle, G., Gajda, W. and Petersen, S., On the semisimplicity of reductions and adelic openness for $E$-rational compatible systems over global function fields, Trans. Amer. Math. Soc. 372 (2019), 56215691.Google Scholar
Böckle, G., Harris, M., Khare, C. and Thorne, J., ${\widehat {G}}$-local systems on smooth projective curves are potentially automorphic, Acta Math. 223 (2019), 1111.Google Scholar
Bourbaki, N., Lie groups and Lie algebras, Elements of Mathematics (Berlin) (Springer, Berlin, 2005), ch. 7–9. Translated from the 1975 and 1982 French originals by Andrew Pressley.Google Scholar
Broué, M., Isométries de caractères et équivalences de Morita ou dérivées (French) [Isometries of characters and Morita or derived equivalences], Inst. Hautes Études Sci. Publ. Math. 71 (1990), 4563.Google Scholar
Cadoret, A. and Zheng, W., Ultraproduct coefficients in étale cohomology and torsion-freeness in compatible families, in preparation.Google Scholar
Česnavicius, K., Poitou–Tate without restrictions on the order, Math. Res. Lett. 22 (2015), 16211666.Google Scholar
Chan, C. and Ivanov, A., Cohomological representations of parahoric subgroups, Represent. Theory 25 (2021), 126.Google Scholar
Chan, C. and Oi, M., Geometric $L$-packets of Howe-unramified toral supercuspidal representations, J. Eur. Math. Soc. (2023), doi:10.4171/JEMS/1396.Google Scholar
Clozel, L., Harris, M. and Taylor, R., Automorphy for some $l$-adic lifts of automorphic mod $l$ Galois representations, Publ. Math. Inst. Hautes Études Sci. 108 (2008), 1181. With Appendix A, summarizing unpublished work of Russ Mann, and Appendix B by Marie-France Vignéras.Google Scholar
de Jong, A. J., Smoothness, semi-stability and alterations, Publ. Math. Inst. Hautes Études Sci. 83 (1996), 5193.Google Scholar
de Jong, A. J., A conjecture on arithmetic fundamental groups, Israel J. Math. 121 (2001), 6184.Google Scholar
Deligne, P., La conjecture de Weil. II, Publ. Math. Inst. Hautes Études Sci. 52 (1980), 137252.Google Scholar
Deligne, P. and Lusztig, G., Representations of reductive groups over finite fields, Ann. of Math. (2) 103 (1976), 103161.Google Scholar
Drinfeld, V., On the pro-semisimple completion of the fundamental group of a smooth variety over a finite field, Adv. Math. 327 (2018), 708788.Google Scholar
Feit, W. and Seitz, G. M., On finite rational groups and related topics, Illinois J. Math. 33 (1989), 103131.Google Scholar
Feng, T., Smith theory and cyclic base change functoriality, Forum Math. Pi 12 (2024), 166.Google Scholar
Fintzen, J., Tame cuspidal representations in non-defining characteristics, Michigan Math. J. 72 (2022), 331342.Google Scholar
Gaitsgory, D., On de Jong's conjecture, Israel J. Math. 157 (2007), 155191.Google Scholar
Gan, W. T., Harris, M. and Sawin, W., Local parameters of supercuspidal representations (with an appendix by Raphaël Beuzart-Plessis), Forum Math. Pi, to appear. Preprint (2021), arXiv:2109.07737.Google Scholar
Genestier, A. and Lafforgue, V., Chtoucas restreints pour les groupes réductifs et paramétrisation de Langlands locale, Preprint (2017), arXiv:1709.00978.Google Scholar
Gross, B. H. and Reeder, M., Arithmetic invariants of discrete Langlands parameters, Duke Math. J. 154 (2010), 431508.Google Scholar
Guiraud, D.-A., Unobstructedness of Galois deformation rings associated to regular algebraic conjugate self-dual cuspidal automorphic representations, Algebra Number Theory 14 (2020), 13311380.Google Scholar
Harder, G., Chevalley groups over function fields and automorphic forms, Ann. of Math. (2) 100 (1974), 249306.Google Scholar
Heinloth, J., Ngô, B.-C. and Yun, Z., Kloosterman sheaves for reductive groups, Ann. of Math. (2) 177 (2013), 241310.Google Scholar
Hiss, G., Die adjungierten Darstellungen der Chevalley-Gruppen, Arch. Math. (Basel) 42 (1984), 408416.Google Scholar
Hogeweij, G. M. D., Almost-classical Lie algebras. I, II, Nederl. Akad. Wetensch. Indag. Math. 44 (1982), 441452, 453–460.Google Scholar
Ito, K., On a torsion analogue of the weight-monodromy conjecture, Doc. Math. 26 (2021), 17291770.Google Scholar
Kaletha, T., Regular supercuspidal representations, J. Amer. Math. Soc. 32 (2019), 10711170.Google Scholar
Khare, C. and Thorne, J. A., Potential automorphy and the Leopoldt conjecture, Amer. J. Math. 139 (2017), 12051273.Google Scholar
Khare, C. and Wintenberger, J.-P., Serre's modularity conjecture. II, Invent. Math. 178 (2009), 505586.Google Scholar
Labesse, J.-P., Cohomologie, stabilisation et changement de base, Astérisque 257 (1999).Google Scholar
Labesse, J.-P. and Lemaire, B., La formule des traces tordue pour les corps de fonctions, Preprint (2021), arXiv:2102.02517.Google Scholar
Lafforgue, L., Chtoucas de Drinfeld et correspondance de Langlands, Invent. Math. 147 (2002), 1241.Google Scholar
Lafforgue, V., Chtoucas pour les groupes réductifs et paramétrisation de Langlands globale, J. Amer. Math. Soc. 31 (2018), 719891.Google Scholar
Larsen, M., Maximality of Galois actions for compatible systems, Duke Math. J. 80 (1995), 601630.Google Scholar
Laumon, G., Cohomology of Drinfeld modular varieties. Part I. Geometry, counting of points and local harmonic analysis (Cambridge University Press, Cambridge, 1996).Google Scholar
Malle, G. and Testerman, D., Linear algebraic groups and finite groups of Lie type (Cambridge University Press, Cambridge, 2011).Google Scholar
Patrikis, S., Deformations of Galois representations and exceptional monodromy, Invent. Math. 205 (2016), 269336.Google Scholar
Ronchetti, N., Local base change via Tate cohomology, Represent. Theory 20 (2016), 263294.Google Scholar
Sawin, W. and Templier, N., On the Ramanujan conjecture for automorphic forms over function fields I. Geometry, J. Amer. Math. Soc. 34 (2021), 653746.Google Scholar
Saxl, J. and Seitz, G. M., Subgroups of algebraic groups containing regular unipotent elements, J. Lond. Math. Soc. (2) 55 (1997), 370386.Google Scholar
Seitz, G. M., The root subgroups for maximal tori in finite groups of Lie type, Pacific J. Math. 106 (1983), 153244.Google Scholar
Springer, T. A. and Steinberg, R., Conjugacy classes, in Seminar on algebraic groups and related finite groups (The Institute for Advanced Study, Princeton, NJ, 1968/69), Lecture Notes in Mathematics, vol. 131 (Springer, Berlin, 1970), 167266.Google Scholar
Treumann, D. and Venkatesh, A., Functoriality, Smith theory, and the Brauer homomorphism, Ann. of Math. (2) 183 (2016), 177228.Google Scholar
Varshavsky, Y., Moduli spaces of principal $F$-bundles, Selecta Math. (N.S.) 10 (2004), 131166.Google Scholar
Vignéras, M.-F., Représentations $\ell$-modulaires d'un groupe réductif $p$-adique avec $\ell \neq p$, Progress in Mathematics, vol. 137 (Birkhäuser, Boston, 1996).Google Scholar
Vignéras, M.-F., Irreducible modular representations of a reductive p-adic group and simple modules for Hecke algebras, in European Congress of Mathematics, vol. I (Barcelona, 2000), Progress in Mathematics, vol. 201 (Birkhäuser, Basel, 2001), 117133.Google Scholar
Völklein, H., The $1$-cohomology of the adjoint module of a Chevalley group, Forum Math. 1 (1989), 113.Google Scholar
Xue, C., Finiteness of cohomology groups of stacks of shtukas as modules over Hecke algebras, and applications, Épijournal Géom. Algébrique 4 (2020), 142, Art. 6.Google Scholar
Xue, C., Cohomology with integral coefficients of stacks of shtukas, Preprint (2020), arXiv:2001.05805.Google Scholar
Yao, Z., The Breuil–Mézard conjecture for function fields, Preprint, arXiv:1808.09433.Google Scholar
Yun, Z., Epipelagic representations and rigid local systems, Selecta Math. (N.S.) 22 (2016), 11951243.Google Scholar