Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-2jsqd Total loading time: 0.199 Render date: 2021-06-19T18:17:34.528Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Local Langlands correspondence and ramification for Carayol representations

Published online by Cambridge University Press:  06 September 2019

Colin J. Bushnell
Affiliation:
King’s College London, Department of Mathematics, Strand, London WC2R 2LS, UK email colin.bushnell@kcl.ac.uk
Guy Henniart
Affiliation:
Laboratoire de Mathématiques d’Orsay, Université Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France email Guy.Henniart@math.u-psud.fr
Corresponding

Abstract

Let $F$ be a non-Archimedean locally compact field of residual characteristic $p$ with Weil group ${\mathcal{W}}_{F}$. Let $\unicode[STIX]{x1D70E}$ be an irreducible smooth complex representation of ${\mathcal{W}}_{F}$, realized as the Langlands parameter of an irreducible cuspidal representation $\unicode[STIX]{x1D70B}$ of a general linear group over $F$. In an earlier paper we showed that the ramification structure of $\unicode[STIX]{x1D70E}$ is determined by the fine structure of the endo-class $\unicode[STIX]{x1D6E9}$ of the simple character contained in $\unicode[STIX]{x1D70B}$, in the sense of Bushnell and Kutzko. The connection is made via the Herbrand function $\unicode[STIX]{x1D6F9}_{\unicode[STIX]{x1D6E9}}$ of $\unicode[STIX]{x1D6E9}$. In this paper we concentrate on the fundamental Carayol case in which $\unicode[STIX]{x1D70E}$ is totally wildly ramified with Swan exponent not divisible by $p$. We show that, for such $\unicode[STIX]{x1D70E}$, the associated Herbrand function satisfies a certain functional equation, and that this property essentially characterizes this class of representations. We calculate $\unicode[STIX]{x1D6F9}_{\unicode[STIX]{x1D6E9}}$ explicitly, in terms of a classical Herbrand function arising naturally from the classification of simple characters. We describe exactly the class of functions arising as Herbrand functions $\unicode[STIX]{x1D6F9}_{\unicode[STIX]{x1D6EF}}$, as $\unicode[STIX]{x1D6EF}$ varies over the set of totally wild endo-classes of Carayol type. In a separate argument, we derive a complete description of the restriction of $\unicode[STIX]{x1D70E}$ to any ramification subgroup and hence a detailed interpretation of the Herbrand function. This gives concrete information concerning the Langlands correspondence.

Type
Research Article
Copyright
© The Authors 2019 

Access options

Get access to the full version of this content by using one of the access options below.

References

Arthur, J. and Clozel, L., Simple algebras, base change, and the advanced theory of the trace formula, Annals of Mathematics Studies, vol. 129 (Princeton University Press, Princeton, NJ, 1989).CrossRefGoogle Scholar
Bushnell, C. J., Effective local Langlands correspondence , in Automorphic forms and Galois representations, Vol. 1, London Mathematical Society Lecture Notes, vol. 414, eds Diamond, F., Kassei, P. L. and Kim, M. (Cambridge University Press, Cambridge, 2014), 102134.CrossRefGoogle Scholar
Bushnell, C. J. and Henniart, G., Local tame lifting for GL(N) I: Simple characters , Publ. Math. Inst. Hautes Études Sci. 83 (1996), 105233.CrossRefGoogle Scholar
Bushnell, C. J. and Henniart, G., Local tame lifting for GL(n) II: Wildly ramified supercuspidals , Astérisque 254 (1999).Google Scholar
Bushnell, C. J. and Henniart, G., Local tame lifting for GL(n) IV: Simple characters and base change , Proc. Lond. Math. Soc. 87 (2003), 337362.CrossRefGoogle Scholar
Bushnell, C. J. and Henniart, G., The essentially tame local Langlands correspondence, I , J. Amer. Math. Soc. 18 (2005), 685710.CrossRefGoogle Scholar
Bushnell, C. J. and Henniart, G., The essentially tame local Langlands correspondence, II: Totally ramified representations , Compos. Math. 141 (2005), 9791011.CrossRefGoogle Scholar
Bushnell, C. J. and Henniart, G., The local Langlands conjecture for GL(2), Grundlehren der Mathematischen Wissenschaften, vol. 335 (Springer, Berlin, 2006).CrossRefGoogle Scholar
Bushnell, C. J. and Henniart, G., The essentially tame local Langlands correspondence, III: The general case , Proc. Lond. Math. Soc. (3) 101 (2010), 497553.CrossRefGoogle Scholar
Bushnell, C. J. and Henniart, G., Intertwining of simple characters in GL(n) , Int. Math. Res. Not. IMRN 17 (2013), 39773987.CrossRefGoogle Scholar
Bushnell, C. J. and Henniart, G., Langlands parameters for epipelagic representations of GLn , Math. Ann. 358 (2014), 433463.CrossRefGoogle Scholar
Bushnell, C. J. and Henniart, G., To an effective local Langlands correspondence , Mem. Amer. Math. Soc. 231 (2014), no. 1087.Google Scholar
Bushnell, C. J. and Henniart, G., Higher ramification and the local Langlands correspondence , Ann. of Math. (2) 185 (2017), 919955.CrossRefGoogle Scholar
Bushnell, C. J., Henniart, G. and Kutzko, P. C., Local Rankin-Selberg convolutions for GLn: Explicit conductor formula , J. Amer. Math. Soc. 11 (1998), 703730.CrossRefGoogle Scholar
Bushnell, C. J. and Kutzko, P. C., The admissible dual of GL(N) via compact open subgroups, Annals of Mathematics Studies, vol. 129 (Princeton University Press, Princeton, NJ, 1993).CrossRefGoogle Scholar
Bushnell, C. J. and Kutzko, P. C., Simple types in GL(N): computing conjugacy classes , Contemp. Math. 177 (1994), 107135.CrossRefGoogle Scholar
Carayol, H., Représentations cuspidales du groupe linéaire , Ann. Sci. Éc. Norm. Supér. (4) 17 (1984), 191225.CrossRefGoogle Scholar
Deligne, P., Les corps locaux de caractéristique p, limite de corps locaux de caractéristique 0. Appendice: théorie de la ramification, et fonctions de Herbrand, pour des extensions non galoisiennes , in Représentations des groupes réductifs sur un corps local (Hermann, Paris, 1984), 150157.Google Scholar
Gorenstein, D., Finite groups (AMS Chelsea Publishing, Providence, RI, 2000).Google Scholar
Harris, M. and Taylor, R., On the geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151 (Princeton University Press, Princeton, NJ, 2001).Google Scholar
Heiermann, V., Sur l’espace des représentations irréductibles du groupe de Galois d’un corps local , C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), 571576.Google Scholar
Henniart, G., Représentations du groupe de Weil d’un corps local , Enseign. Math. Sér II 26 (1980), 155172.Google Scholar
Henniart, G., La Conjecture de Langlands pour GL(3) , Mém. Soc. Math. Fr. (N.S.) 11–12 (1984).Google Scholar
Henniart, G., Caractérisation de la correspondance de Langlands par les facteurs 𝜀 de paires , Invent. Math. 113 (1993), 339350.CrossRefGoogle Scholar
Henniart, G., Une preuve simple des conjectures locales de Langlands pour GLn sur un corps p-adique , Invent. Math. 139 (2000), 439455.CrossRefGoogle Scholar
Henniart, G. and Herb, R., Automorphic induction for GL(n) (over local non-archimedean fields) , Duke Math. J. 78 (1995), 131192.CrossRefGoogle Scholar
Henniart, G. and Lemaire, B., Formules de caractères pour l’induction automorphe , J. Reine Angew. Math. 645 (2010), 4184.Google Scholar
Henniart, G. and Lemaire, B., Changement de base et induction automorphe pour GLn en caractéristique non nulle , Mém. Soc. Math. Fr. (N.S.) 124 (2011).Google Scholar
Jacquet, H., Piatetski-Shapiro, I. and Shalika, J., Rankin-Selberg convolutions , Amer. J. Math. 105 (1983), 367483.CrossRefGoogle Scholar
Kazhdan, D., On lifting , in Lie group representations II, Lecture Notes in Mathematics, vol. 1041 (Springer, New York, 1984), 209249.Google Scholar
Kutzko, P. C., The irreducible imprimitive local Galois representations of prime dimension , J. Algebra 57 (1979), 101110.CrossRefGoogle Scholar
Kutzko, P. C., The Langlands conjecture for GL2 of a local field , Ann. of Math. (2) 112 (1980), 381412.CrossRefGoogle Scholar
Kutzko, P. C., The exceptional representations of GL2 , Compos. Math. 51 (1984), 314.Google Scholar
Kutzko, P. C. and Moy, A., On the local Langlands conjecture in prime dimension , Ann. of Math. (2) 121 (1985), 495517.CrossRefGoogle Scholar
Laumon, G., Rapoport, M. and Stuhler, U., 𝓓-elliptic sheaves and the Langlands correspondence , Invent. Math. 113 (1993), 217338.CrossRefGoogle Scholar
Mœglin, C., Sur la correspondance de Langlands-Kazhdan , J. Math. Pures Appl. (9) 69 (1990), 175226.Google Scholar
Scholze, P., The local Langlands correspondence for GLn over p-adic fields , Invent. Math. 192 (2013), 663715.CrossRefGoogle Scholar
Serre, J.-P., Corps locaux (Hermann, Paris, 1968).Google Scholar
Shahidi, F., Fourier transforms of intertwining operators and Plancherel measures for GL(n) , Amer. J. Math. 106 (1984), 67111.CrossRefGoogle Scholar
Zink, E.-W., U 1 -Konjugationsklassen in lokalen Divisionsalgebren , Math. Nachr. 137 (1988), 283320.CrossRefGoogle Scholar
Zink, E.-W., Irreducible polynomials over local fields and higher ramification theory in local Langlands theory , Contemp. Math. 131 (1992 (part 2)), 529563.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Local Langlands correspondence and ramification for Carayol representations
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Local Langlands correspondence and ramification for Carayol representations
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Local Langlands correspondence and ramification for Carayol representations
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *