Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-09T03:30:49.761Z Has data issue: false hasContentIssue false

Changes in Polyploidy During Aging in Human Liver

Published online by Cambridge University Press:  29 November 2010

Hildegard E. Enesco
Affiliation:
Concordia University
Marie I. Laskey
Affiliation:
Concordia University
Michael Fisman
Affiliation:
London Psychiatric Hospital

Abstract

The level of liver polyploidy was compared in three groups of humans: a young group aged 20–46, an older group aged 62–68 and the oldest group aged 70–79. The most important trend showed by the data was that there is a depletion of 2N and 4N cells, accompanied by an increase in 8N and 16N cells as a function of advancing age. There was a high degree of variability in the percentage of cells in each ploidy class from one individual to the next for all age groups. For this reason, polyploidy appears to be a less effective biomarker of aging in humans than it is in experimental animals.

Résumé

Différentes classes de noyaux polyploides, mesurés, dans le foie, sont étudiés chez des humains répartis en 3 groupes: 20–46 ans; 62–68 ans, et 70–79 ans. Malgré la grande variabilité du degré de la polyploidie entre les membres de chaque groupe, les mesures indiquent que chez les personnes plus agées, on peut distinguer deux tendances; d'une part, une réduction du pourcentage des diploides et de tetraploides et d'autre part, une augmentation des octoploides et des noyaux 16 N.

Type
Articles
Copyright
Copyright © Canadian Association on Gerontology 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bohm, N. & Noltenmeyer, N.(1981). Excessive reversible pheno-barbital induced nuclear DNA polyploidization in the growing mouse liver. Histochemistry 72, 6374.CrossRefGoogle Scholar
Brasch, K. (1980). Endopolyploidy in vertebrate liver: an evolutionary perspective. Cell Biology Inti. Reports 4, 217226.CrossRefGoogle ScholarPubMed
Brodsky, W.Y. & Uryvaeva, I.V. (1977). Cell polyploidy: its relation to tissue growth and function. Int. Rev. Cytol. 50, 275332.CrossRefGoogle Scholar
Carriere, R. (1969). The growth of liver parenchymal nuclei and its endocrine regulation. Int. Rev. Cytol. 25, 201277.CrossRefGoogle ScholarPubMed
Enesco, H.E. & Samborsky, J. (1983). Liver polyploidy: Influence of age and of dietary restriction. Exp. Gerontol. 18, 7987.CrossRefGoogle ScholarPubMed
Epstein, C.J. (1967). Cell size, nuclear content and the development of polyploidy in the mammalian liver. Proc. Nati. Acati. Sci. 57, 327334.CrossRefGoogle ScholarPubMed
Gahan, P.D. & Middleton, J. (1984). Euploidization of human hepatocytes from donors of different ages and both sexes compared with those from cases of Werner's syndrome and progeria. Exp. Gerontol. 19, 355358.CrossRefGoogle ScholarPubMed
Gaub, J., Fauerholdt, L., Keiding, S., Kondrup, J., Peterson, P., & Langewantzin, G. (1981). Cyto-photometry of livercells from ethanol-fed rats: ethanol causes increased polyploidization and protein accumulation. Eur. J. Clin. Invest. 11, 235237.CrossRefGoogle Scholar
Helwig-Larsen, H. (1952). Nuclear class Series. Acta Path. Scand. (Kobenh.) Suppl. 92.Google Scholar
Leuchtenberger, C., Leuchtenberger, R. & Davis, A.M. (1954). A microspectrophotometric study of the desoxyribose nucleic acid (DNA) content of cells of normal and malignant human tissues. Am. J. Path. 30, 6585.Google ScholarPubMed
Leuchtenberger, C., Helwig-Larsen, H.F., & Murmanis, L. (1954). Relationship between hereditary pituitary dwarfism and the formation of multiple deoxyribose nucleic acid (DNA) classes in mice. Laboratory Invest. 3, 245260.Google Scholar
Romagna, F. & Zbinden, G. (1981). Distribution of nuclear size and DNA content in serial liver biopsies of rats treated with N-nitrosomor-pholine, phenobarbital and butylated hydrox-ytoluene. Exp. Cell. Biol. 49, 249305.Google Scholar
Schulte-Herman, R., Deerberg, F. & Landgraf, H. (1976). Changes in size. DNA content and nuclear ploidy of rat liver produced by the environmental microflora. Virchow's Archiv. B: Cell Path. 20, 7176.Google Scholar
Shima, A. & Sugahara, T. (1976). Age-dependent ploidy class changes in mouse hepatocyte nuclei as revealed by Feulgen-DNA cyto-photometry. Exp. Geront. 11, 193203.CrossRefGoogle Scholar
Sokal, R.R. & Rohlf, F.J. (1981). Biometry (2nd edition), W.H. Freeman and Company, San Francisco.Google Scholar
Swartz, F.J. (1956). The development of the human liver of multiple desoxyribose nucleic acid (DNA) classes and their relationships to the age of the individual. Chromosoma 8, 5372.CrossRefGoogle Scholar
Swift, H. (1950). The DNA content of animal nuclei. Physiol. Zool. 23, 169198.CrossRefGoogle ScholarPubMed
Swift, H. (1953). Quantitative aspects of nuclear nucleoproteins. Intern. Rev. Cytology 2, 176.CrossRefGoogle Scholar
Uryvaeva, I.V. (1981). Biological significance of liver cell polyploidy: an hypothesis.J. Theor. Biol. 89, 557571.CrossRefGoogle Scholar
Watanabe, T., Shimada, H. & Tanaka, Y. (1978). Human hepatocytes and aging: a cytophotometrical analysis in 35 sudden-death cases. Virchow s Archiv. B. Cell Path. 27, 307316.CrossRefGoogle ScholarPubMed