Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-18T21:02:38.664Z Has data issue: false hasContentIssue false

Small-fibre Neuropathy in Patients with Familial Amyotrophic Lateral Sclerosis Type 8

Published online by Cambridge University Press:  02 December 2022

Marcela Câmara Machado-Costa
Affiliation:
Department of Genetics, Federal University of Bahia, Bahia, Brazil
Miguel Mitne-Neto
Affiliation:
Department of Research and Development, Fleury Group, São Paulo, Brazil
Luiza Helena Degani Costa
Affiliation:
Department of Pneumology, Federal University of São Paulo, São Paulo, Brazil
Luciana Moura Alves
Affiliation:
Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, Brazil
Acary Souza Bulle Oliveira
Affiliation:
Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, Brazil
Mayana Zatz
Affiliation:
Human Genome and Research Centre, University of São Paulo, São Paulo, Brazil
Helga Cristina Almeida Silva*
Affiliation:
Discipline of Anaesthesiology, Pain and Intensive Care, Department of Surgery, Federal University of São Paulo, São Paulo, Brazil
*
Corresponding author: Helga Cristina Almeida da Silva, University Federal São Paulo, Rua Pedro Toledo, 781, 04039-032, SP, Brazil. Email: halsilva@uol.com.br

Abstract:

Background:

Amyotrophic lateral sclerosis (ALS) is a degenerative disease of the nervous system that primarily affects motor neurons. ALS type 8 (ALS8) is a familiar form with predominant involvement of lower motor neurons, tremor, and slow progression.

Objective:

The aim of this study was to describe sensory involvement in a cohort of ALS8 patients and compare it with the characteristics of sporadic ALS (sALS) patients and controls.

Methods:

We compared data from 40 ALS8 and 10 sALS patients assessed by neurological evaluation and electrophysiological study. Skin biopsies were performed in these patients and 12 controls for analysis of intraepidermal nerve fiber (IENF) density by protein gene product 9.5 (PGP 9.5) immunohistochemistry.

Results:

The ALS8 group was younger than the sALS group at the onset of symptoms (p < 0.05) and had a longer disease evolution (p < 0.01). Sensory abnormalities were evident in 35% of the ALS8 and 30% of the sALS patients by neurological examination, and all ALS patients presented normal sensory nerve action potentials. Despite being similar in the ALS8 and sALS groups, IENF density in the ALS8 group was lower than that in the controls (p < 0.0005). In the ALS8 group, IENF density was significantly lower in patients with impairment of vibratory sensation than in those without this finding (p < 0.05) and in females than in males (p < 0.05).

Conclusion:

Sensory impairment and decreased IENF density are present in ALS8 patients at a frequency and intensity similar to that in the sALS group.

Résumé :

RÉSUMÉ :

Les neuropathies à petites fibres et la sclérose latérale amyotrophique familiale de type 8.

Contexte :

La sclérose latérale amyotrophique (SLA) est une maladie dégénérative du système nerveux qui affecte principalement les neurones moteurs. La SLA de type 8 (SLA8) est une forme familiale de la maladie qui se manifeste par une atteinte marquée des neurones moteurs inférieurs, des tremblements et une évolution lente.

Objectif :

L’étude avait pour buts de caractériser l’atteinte sensorielle observée dans une cohorte patients souffrant de la SLA8 et de comparer les résultats obtenus avec les caractéristiques de la SLA sporadique (SLAs) chez des patients touchés ainsi que chez des témoins.

Méthode :

Il y a eu comparaison de données provenant de 40 patients atteints de la SLA8 et de 10 patients atteints de la SLAs, soumis à une évaluation neurologique et à un examen d’électrophysiologie. Une biopsie de la peau a été effectuée chez ces patients ainsi que chez 12 témoins pour analyse de la densité de fibres nerveuses intraépidermiques (FNIE) par immunohistochimie du produit du gène protéique 9.5.

Résultats :

Le groupe de sujets atteints de la SLA8 était plus jeune que le groupe de sujets atteints de la SLAs au moment de l’apparition des symptômes (p < 0,05) et les premiers ont connu une évolution plus longue de la maladie (p < 0,01) que les seconds. Des anomalies sensorielles manifestes ont été observées chez 35 % des patients atteints de la SLA8 et chez 30 % de ceux atteints de la SLAs à l’examen neurologique, et les potentiels d’action des nerfs sensitifs étaient normaux chez tous les patients atteints de la SLA. Certes, la densité de FNIE était comparable dans les deux groupes de malades atteints de la SLA, mais celle dans le groupe de la SLA8 était inférieure à celle enregistrée dans le groupe témoin (p < 0,0005). Plus précisément, la densité de FNIE dans le groupe SLA8 était sensiblement plus faible chez les patients atteints d’une déficience sensorielle vibratoire que chez ceux qui en étaient exempts (p < 0,05), de même que chez les femmes comparativement aux hommes. (p < 0,05).

Conclusion :

Les patients atteints de la SLA8 connaissent une déficience sensorielle et une diminution de la densité des FNIE à une fréquence et à un degré d’intensité comparables à ceux observés chez les patients atteints de la SLAs.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Canadian Neurological Sciences Federation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Siddique, N, Siddique, T. Amyotrophic Lateral Sclerosis Overview. 2001 Mar 23 [Updated 2019 Oct 3]. In: Adam, MP, Ardinger, HH, Pagon, RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2020, https://www.ncbi.nlm.nih.gov/books/NBK1450/ Google Scholar
Carvalho, M, Swash, M. Amyotrophic lateral sclerosis: an update. Curr Opin Neurol. 2011;24:497503.CrossRefGoogle ScholarPubMed
Brooks, BR, Miller, RG, Swash, M, Munsat, TL. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. ALS Other Motor Neuron Disorders. 2000;1:2939.Google Scholar
De Carvalho, M, Dengler, R, Eisen, A, at, al. Electrodiagnostic criteria for diagnosis of ALS. Clin Neurophysiol. 2008;119:497503.CrossRefGoogle ScholarPubMed
Millecamps, SSOD, V.A.P.B., ANG. TARDBP, and FUS mutations in familial amyotrophic lateral sclerosis: genotype-phenotype correlations. J Med Genet. 2010;47:55460.CrossRefGoogle ScholarPubMed
Nishimura, AL, Mitne-Neto, M, Silva, HC, et al. A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am J Hum Genet. 2004;75:82231.CrossRefGoogle ScholarPubMed
Nishimura, AL, Al-Chalabi, A, Zatz, M. A common founder for amyotrophic lateral sclerosis type 8 (ALS8) in the Brazilian population. Hum Genet. 2005;118:499500.CrossRefGoogle ScholarPubMed
Nishimura, AL, Mitne-Neto, M, Silva, HC, et al. A novel locus for late onset amyotrophic lateral sclerosis/motor neuron disease variant at 20q13. J Med Genet. 2004;41:31520.CrossRefGoogle ScholarPubMed
Funke, AD, Esserb, M, Krüttgen, A, et al. The p.P56S mutation in the VAPB gene is not due to a single founder: the first European case. Clin Genet. 2010;77:3023.CrossRefGoogle Scholar
Hammad, M, Silva, A, Glass, J, Sladky, JT, Benatar, M. Clinical, electrophysiologic, and pathologic evidence for sensory abnormalities in ALS. Neurology. 2007;69:223642.CrossRefGoogle ScholarPubMed
Weis, J, Katona, I, Mulle-Newen, G, et al. Small-fiber neuropathy in patients with ALS. Neurology. 2011;76:202429.CrossRefGoogle ScholarPubMed
Luigetti, M, Conte, A, Del Grande, A, et al. Sural nerve pathology in ALS patients: a single-centre experience. Neurol Sci. 2012;33:10959.CrossRefGoogle ScholarPubMed
Mondelli, M, Rossi, A, Passero, S, Guazzi, GC. Involvement of peripheral sensory fibers in amyotrophic lateral sclerosis: electrophysiological study of 64 cases. Muscle Nerve. 1993;16:16672.CrossRefGoogle ScholarPubMed
Lauria, G, Cornblath, DR, Johansson, O. EFNS guidelines on the use of skin biopsy in the diagnosis of peripheral neuropathy. Eur J Neurol. 2005;12:74758.CrossRefGoogle ScholarPubMed
Ebenezer, GJ, Hauer, P, Gibbons, C, McArthur, JC, Polydefkis, M. Assessment of Epidermal Nerve Fibers: a new diagnostic and predictive tool for peripheral neuropathies. J Neuropathol Exp Neurol. 2007;66:105973.CrossRefGoogle ScholarPubMed
Ochoa, J. Recognition of unmyelinated fiber disease: morphologic criteria. Muscle Nerve. 1978;1:37587.CrossRefGoogle ScholarPubMed
Katona, I, Wu, X, Feely, SM, et al. PMP22 expression in dermal nerve myelin from patients with CMT1A. Brain. 2009;132:173440.CrossRefGoogle ScholarPubMed
Saporta, MA, Katona, I, Lewis, RA, Masse, S, Shy, ME, Li, J. Shortened intermodal length of dermal myelinated nerve fibers in Charcot-Marie-Tooth disease type 1A. Brain. 2009;132:326373.CrossRefGoogle Scholar
Lauria, G, Hsiehb, ST, Johanssonc, O, et al. European Federation of Neurological Societies/Peripheral Nerve Society Guideline on the use of skin biopsy in the diagnosis of small fiber neuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society. Eur J Neurol. 2010;17:90312.CrossRefGoogle ScholarPubMed
Vicková-Moravcová, E, Bednarík, J, Dusek, L, et al. Diagnostic validity of epidermal nerve fiber densities in painful sensory neuropathies. Muscle Nerve. 2008;37:5060.CrossRefGoogle Scholar
McCarthy, BG, Hsieh, ST, Stocks, A, et al. Cutaneous innervations in sensory neuropathies: evaluation by skin biopsy. Neurology. 1995;45:184855.CrossRefGoogle ScholarPubMed
Sommer, C. Skin biopsy as a diagnostic tool. Curr Opin Neurol. 2008;21:5638.CrossRefGoogle ScholarPubMed
Sommer, C, Lauria, G. Skin biopsy in the management of peripheral neuropathy. Lancet Neurol. 2007;6:63242.CrossRefGoogle ScholarPubMed
Hsiung-Fei, C, To-Jung, T, Whei-Min, L, et al. Quantitative pathology of cutaneous nerve terminal degeneration in the human skin. Acta Neuropathol. 2001;102:45561.Google Scholar
Moura, L, Oliveira, ASB, Zanoteli, E, Cardoso, R, Schmidt, B, Gabbai, AL. Padronização normal das fibras nervosas intraepidérmicas em 30 voluntários saudáveis com PGP 9,5. Arq Neuropsiquiatr. 2004;62:2715.CrossRefGoogle ScholarPubMed
Lauria, G, Holland, N, Hauer, P, et al. Epidermal innervations: changes with aging, topographic location, and in sensory neuropathy. J Neurol Sci. 1999;164:1728.CrossRefGoogle ScholarPubMed
McArthur, JC, Stocks, EA, Hauer, P, Cornblath, DR, Griffin, JW. Epidermal nerve fiber density: normative reference range and diagnostic efficiency. Arch Neurol. 1998;55:151320.CrossRefGoogle ScholarPubMed
Goransson, LG, Mellgren, SI, Lindal, S, Omdal, R. The effect of age and gender on epidermal nerve fiber density. Neurology. 2004;62:77477.CrossRefGoogle ScholarPubMed
Ozge, A, Atis, S, Sevim, S. Subclinical peripheral neuropathy associated with chronic obstructive pulmonary disease. Electromyogr. Clin Neurophysiol. 2001;41:18591.Google ScholarPubMed
Bird, SJ, Rich, MM. Clinical illness myopathy and polyneuropathy. Curr Neurol Neurosci Rep. 2002;2:52733.CrossRefGoogle ScholarPubMed
El-Salem, K, Khassawneh, B, Alrefai, A, Dwairy, AR, Rawashdeh, S. Interval neurophysiological changes in non septic critically ill mechanically ventilated patients. J Clin Neurophysiol. 2012;29:34952.CrossRefGoogle ScholarPubMed
Umapathi, T, Tan, WL, Tan, NC, Chan, YH. Determinants of epidermal nerve fiber density in normal individuals. Muscle Nerve. 2006;3:7426.Google Scholar
Dalla Bella, E, Lombardi, R, Porretta-Serapiglia, C, et al. Amyotrophic lateral sclerosis causes small fiber pathology. Eur J Neurol. 2016;23:41620.CrossRefGoogle ScholarPubMed
Pugdahl, K, Fuglsang-Frederiksen, A, de Carvalho, M, et al. Generalised sensory system abnormalities in amyotrophic lateral sclerosis: a European multicentre study. J Neurol Neurosurg Psychiatry. 2007;78:7469.Google ScholarPubMed
Larroquette, F, Seto, L, Gaub, PL, et al. Vapb/Amyotrophic lateral sclerosis 8 knock-in mice display slowly progressive motor behavior defects accompanying ER stress and autophagic response. Hum Mol Genet. 2015;24:651529.CrossRefGoogle ScholarPubMed