Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T10:53:40.655Z Has data issue: false hasContentIssue false

The Role of Piriform Cortex Adenosine A1 Receptors on Hippocampal Kindling

Published online by Cambridge University Press:  02 December 2014

Simin Namvar
Affiliation:
Department of Physiology, School of Medical Sciences, Tarbiat Modares University, Tehran, IR, Iran
Javad Mirnajafi-Zadeh
Affiliation:
Department of Physiology, School of Medical Sciences, Tarbiat Modares University, Tehran, IR, Iran
Yaghoub Fathollahi
Affiliation:
Department of Physiology, School of Medical Sciences, Tarbiat Modares University, Tehran, IR, Iran
Maryam Zeraati
Affiliation:
Department of Physiology, School of Medical Sciences, Tarbiat Modares University, Tehran, IR, Iran
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Introduction:

The hippocampus and piriform cortex have a critical role in seizure propagation. In this study, the role of adenosine A1 receptors of piriform cortex on CA1 hippocampal kindled seizures was studied in rats.

Methods:

Animals were implanted with a tripolar electrode in the right hippocampal CA1 region and two guide cannulae in the left and right piriform cortex. They were kindled by daily electrical stimulation of hippocampus. In fully kindled rats, N6- cyclohexyladenosine (CHA; a selective adenosine A1 receptors agonist) and 1, 3-dimethyl-8-cyclopenthylxanthine (CPT a selective adenosine A1 receptor antagonist) were microinfused into the piriform cortex. The animals were stimulated at 5, 15 and 90 minutes (min) after drag injection.

Results:

Obtained data showed that CHA (10 and 100 μM) reduced afterdischarge duration, stage 5 seizure duration, and total seizure duration at 5 and 15 min after drag injection. There was no significant change in latency to stage 4 seizure. CPT at concentration of 20 μM increased afterdischarge duration, stage 5 seizure duration, and total seizure duration and decreased latency to stage 4 seizure at 5 and 15 min post injection. Pretreatment of rats with CPT (10 μM), 5 min before CHA (100 μM), reduced the effect of CHA on seizure parameters.

Conclusion:

These results suggested that activity of adenosine A1 receptors in the piriform cortex has an anticonvulsant effect on kindled seizures resulting from electrical stimulation of the CA1 region of the hippocampus.

Résumé:

<span class='bold'>RÉSUMÉ:</span><span class='bold'><span class='italic'>Contexte:</span></span>

L’hippocampe et le cortex piriforme jouent un role déterminant dans la propagation des crises d’épilepsie. Dans cette étude, nous avons évalué le röle des récepteurs A1 de l’adénosine du cortex piriforme sur les crises provoquées par embrasement de la région CA1 de l’hippocampe chez des rats.

<span class='bold'><span class='italic'>Méthodes:</span></span>

Nous avons implanté une électrode tripolaire dans la région CA1 droite de l’hippocampe des rats et deux canules guides, dans le cortex piriforme gauche et droit. L’hippocampe était ensuite stimulé électriquement à tous les jours. Chez les rats complètement embrasés, la N6–cyclohexyladénosine (CHA; un agoniste sélectif des récepteurs A1 de l’adénosine) et la 1,3–diméthyl–8–cyclopenthylxanthine (CPT, un antagoniste sélectif des récepteurs A1 de l’adénosine) ont été microinfusés dans le cortex piriforme. Les animaux ont été stimulés 5, 15 et 90 minutes après l’injection de la substance.

<span class='bold'><span class='italic'>Résultats:</span></span>

Les données ainsi obtenues démontrent que la CHA (10 et 100 |iM) a diminué la durée de la postdécharge, la durée du stade 5 des crises et la durée totale des crises, 5 minutes et 15 minutes après l’injection de la substance. On n’a pas observé de changement significatif de la latence au stade 4 des crises. La CPT à une concentration de 20 |iM a augmenté significativement la durée de la postdécharge, la durée du stade 5 des crises et la durée totale des crises et a diminué la latence au stade 4 des crises 5 minutes et 15 minutes après l’injection. Le prétraitement des rats au moyen de la CPT (10 |iM) 5 minutes avant l’injection de CHA (100 |JM) a atténué l’effet de la CHA sur les paramètres des crises.

<span class='bold'><span class='italic'>Conclusion:</span></span>

Ceci laisse croire que l’activité des récepteurs A1 de l’adénosine du cortex piriforme a un effet anticonvulsivant sur les crises résultant d’un embrasement par stimulation électrique de la région CA1 de l’hippocampe.

Type
Original Articles
Copyright
Copyright © The Canadian Journal of Neurological 2008

References

1. French, JA, Williamson, PD, Thadani, VM, Darcey, TM, Mattson, RH, Spencer, SS, et al. Characteristics of medial temporal lobe epilepsy: I. Results of history and physical examination. Ann Neurol. 1993; 34:77480.CrossRefGoogle ScholarPubMed
2. Sato, M, Racine, RJ, McIntyre, DC. Kindling: basic mechanisms and clinical validity. Electroencephalogr Clin Neurophysiol. 1990; 76:45972.Google Scholar
3. Goddard, GV, McIntyre, DC, Leech, CK. A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol. 1969; 25:295330.CrossRefGoogle ScholarPubMed
4. Loscher, W, Ebert, U. The role of the piriform cortex in kindling. Prog Neurobiol. 1996; 50:42781.CrossRefGoogle ScholarPubMed
5. McIntyre, DC, Kelly, ME. Is the pyriform cortex important for limbic kindling? In: Wada, JA, editor. Kindling 4. New York: Plenum Press; 1990. p. 2132.CrossRefGoogle Scholar
6. Amaral, DG, Witter MP Hippocampal formation. In: Paxinos, G, editor. The rat nervous system. San Diego: Academic Press; 1995. p.183214.Google Scholar
7. Luskin, MB, Price, JL. The topographic organization of associational fibers of the olfactory system in the rat, including centrifugal fibers to the olfactory bulb. J Comp Neurol. 1983; 216:26491.Google Scholar
8. Haas, HL, Selbach, O. Functions of neuronal adenosine receptors. Naunyn Schmiedebergs Arch Pharmacol. 2000; 362:37581.CrossRefGoogle ScholarPubMed
9. Jarvis, M, Williams, M. Adenosine in the central nervous system. In: Williams, M, editor. Adenosine and adenosine receptors. Totowa: Humana Press; 1990. p. 42360.Google Scholar
10. Dragunow, M. Adenosine: the brain’s natural anticonvulsant. Trends Pharmacol Sci. 1986; 7:12830.Google Scholar
11. Dragunow, M. Purinergic mechanisms in epilepsy. Prog Neurobiol. 1988; 31:85108.Google Scholar
12. Boison, D. Adenosine-based cell therapy approaches for pharmacoresistant epilepsies. Neurodegener Dis. 2007; 4:2833.Google Scholar
13. Barraco, RA, Swanson, TH, Phillis, JW, Berman, RF. Anticonvulsant effects of adenosine analogues on amygdaloid-kindled seizures in rats. Neurosci Lett. 1984; 46:31722.Google Scholar
14. Chen, Y, Graham, DI, Stone, TW. Release of endogenous adenosine and its metabolites by the activation of NMDA receptors in the rat hippocampus in vivo . Br J Pharmacol. 1992; 106:6328.Google Scholar
15. Chin, JH. Adenosine receptors in brain: neuromodulation and role in epilepsy. Ann Neurol. 1989; 26:6958.Google Scholar
16. Dunwiddie, TV. Endogenously released adenosine regulates excitability in the in vitro hippocampus. Epilepsia. 1980; 21:5418.Google Scholar
17. Pourgholami, MH, Rostampour, M, Mirnajafi-Zadeh, J, Palizvan, MR. Intra-amygdala infusion of 2-chloroadenosine suppresses amygdala-kindled seizures. Brain Res. 1997; 775:3742.Google Scholar
18. Alasvand Zarasvand, M, Mirnajafi-Zadeh, J, Fathollahi, Y, Palizvan, MR. Anticonvulsant effect of bilateral injection of N6-cyclohexyladenosine into the CA1 region of the hippocampus in amygdala-kindled rats. Epilepsy Res. 2001; 47:1419.Google Scholar
19. Rezvani, ME, Mirnajafi-Zadeh, J, Fathollahi, Y, Palizvan, MR. Changes in neuromodulatory effect of adenosine A1 receptors on piriform cortex field potentials in amygdala kindled rats. Eur J Pharmacol. 2007; 565:607.Google Scholar
20. Mohammad-Zadeh, M, Amini, A, Mirnajafi-Zadeh, J, Fathollahi, Y. The role of adenosine A(1) receptors in the interaction between amygdala and entorhinal cortex of kindled rats. Epilepsy Res. 2005; 65:19.CrossRefGoogle ScholarPubMed
21. Shahabi, P, Mirnajafi-Zadeh, J, Fathollahi, Y, Hoseinmardi, N, Rezvani, ME, Eslami-far, A. Amygdala adenosine A1 receptors have no anticonvulsant effect on piriform cortex-kindled seizures in rat. Can J Physiol Pharmacol. 2006; 84:91321.CrossRefGoogle ScholarPubMed
22. Hosseinmrdi, N, Mirnjafi-Zadeh, J, Fathollahi, Y, Shahabi, P. The role of adenosine A1 and A2A receptors of entorhinal cortex on piriform cortex kindled seizures in rats. Pharmacol Res. 2007; 56(2):11017.CrossRefGoogle Scholar
23. Zeraati, M, Mirnajafi-Zadeh, J, Fathollahi, Y, Namvar, S, Rezvani, ME. Adenosine A1 and A2A receptors of hippocampal CA1 region have opposite effects on piriform cortex kindled seizures in rats. Seizure. 2006; 15:418.CrossRefGoogle ScholarPubMed
24. Goodman, RR, Synder, SH. Autoradiographic localization of adenosine receptors in rat brain using [3H]cyclohexyladenosine. J Neurosci. 1982; 2:123041.Google Scholar
25. Olfert, ED, Cross, BM, McWilliam, AA. Guide to the care and use of experimental animals. Ottawa. Canadian Council on Animal Care; 1993.Google Scholar
26. Paxinos, G, Watson, C. The rat brain in stereotaxic coordinates. New York: Academic Press; 1986.Google Scholar
27. Racine, RJ. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol. 1972; 32:28194.CrossRefGoogle ScholarPubMed
28. Mirnajafi-Zadeh, J, Pourgholami, MH, Palizvan, MR, Rostampour, M, Fallahi, M. Anticonvulsant action of 2-chloroadenosine injected focally into the perirhinal cortex in amygdaloid kindled rats. Epilepsy Res. 1999; 37:3743.Google Scholar
29. Mirnajafi-Zadeh, J, Fathollahi, Y, Pourgholami, MH. Intraperitoneal and intraamygdala N(6)-cyclohexyladenosine suppress hippocampal kindled seizures in rats. Brain Res. 2000; 858:4854.Google Scholar
30. Rosen, JB, Berman, RF. Differential effects of adenosine analogs on amygdala, hippocampus, and caudate nucleus kindled seizures. Epilepsia. 1987; 28:65866.CrossRefGoogle ScholarPubMed
31. Corradetti, R, Lo Conte, G, Moroni, F, Passani, MB, Pepeu, G. Adenosine decreases aspartate and glutamate release from rat hippocampal slices. Eur J Pharmacol. 1984; 104:1926.Google Scholar
32. Poli, A, Lucchi, R, Zottini, M, Traversa, U. Adenosine A1 receptor-mediated inhibition of evoked glutamate release is coupled to calcium influx decrease in goldfish brain synaptosomes. Brain Res. 1993; 620:24550.Google Scholar
33. Shepherd, GM, Greer, CA. Olfactory bulb. In: Shepherd, GM, editor. The synaptic organization of the brain. New York: Oxford University Press; 1990. p.13369.Google Scholar
34. Cain, DP, Desborough, KA, McKitrick, DJ. Retardation of amygdala kindling by antagonism of NMD-aspartate and muscarinic cholinergic receptors: evidence for the summation of excitatory mechanisms in kindling. Exp Neurol. 1988; 100:17987.Google Scholar
35. Holmes, KH, Bilkey, DK, Laverty, R, Goddard, GV. The N-methy1-D-aspartate antagonists aminophosphonovalerate and carboxypiperazinephosphonate retard the development and expression of kindled seizures. Brain Res. 1990; 506:22735.CrossRefGoogle Scholar
36. Trussell, LO, Jackson, MB. Dependence of an adenosine-activated potassium current on a GTP-binding protein in mammalian central neurons. J Neurosci. 1987; 7:330616.Google Scholar
37. Lee, KS, Schubert, P, Heinemann, U. The anticonvulsive action of adenosine: a postsynaptic, dendritic action by a possible endogenous anticonvulsant. Brain Res. 1984; 321:1604.Google Scholar
38. Schwabe, K, Ebert, U, Loscher, W. Bilateral lesions of the central but not anterior or posterior parts of the piriform cortex retard amygdala kindling in rats. Neuroscience. 2000; 101:51321.Google Scholar
39. Schwabe, K, Ebert, U, Loscher, W. Bilateral microinjections of vigabatrin in the central piriform cortex retard amygdala kindling in rats. Neuroscience. 2004; 129:4259.Google Scholar
40. Yang, LX, Jin, CL, Zhu-Ge, ZB, Wang, S, Wei, EQ, Bruce, IC, et al. Unilateral low-frequency stimulation of central piriform cortex delays seizure development induced by amygdaloid kindling in rats. Neuroscience. 2006; 138:108996.Google Scholar
41. Sebastiao, AM, Ribeiro, JA. Fine-tuning neuromodulation by adenosine. Trends Pharmacol Sci. 2000; 21:3416.CrossRefGoogle ScholarPubMed
42. Kostopoulos, G, Drapeau, C, Avoli, M, Olivier, A, Villemeure, JG. Endogenous adenosine can reduce epileptiform activity in the human epileptogenic cortex maintained in vitro . Neurosci Lett. 1989; 106:11924.Google Scholar
43. Burdette, LJ, Dyer, RS. Differential effects of caffeine, picrotoxin, and pentylenetetrazol on hippocampal afterdischarge activity and wet dog shakes. Exp Neurol. 1987:38192.Google Scholar