Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T17:41:35.924Z Has data issue: false hasContentIssue false

Reducing Hardware-Related Complications of Deep Brain Stimulation

Published online by Cambridge University Press:  02 December 2014

Constantine Constantoyannis
Affiliation:
Division of Neurosurgery at the University of British Columbia, Vancouver, Canada
Caglar Berk
Affiliation:
Division of Neurosurgery at the Dalhousie University, Halifax, Canada
Christopher R. Honey
Affiliation:
Division of Neurosurgery at the University of British Columbia, Vancouver, Canada
Ivar Mendez
Affiliation:
Division of Neurosurgery at the Dalhousie University, Halifax, Canada
Robert M. Brownstone
Affiliation:
Division of Neurosurgery at the Dalhousie University, Halifax, Canada
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

Deep brain stimulation (DBS) is used increasingly worldwide for the treatment of Parkinson's disease, dystonia, tremor and pain. As with any implanted system, however, DBS introduces a new series of problems related to its hardware. Infection, malfunction and lead migration or fracture may increase patient morbidity and should be considered when evaluating the risk/benefit ratio of this therapy. This work highlights several factors felt to increase DBS hardware complications.

Methods:

The authors undertook a prospective analysis of their patients receiving this therapy in two Canadian centres, over a four-year period.

Results:

One hundred and forty-four patients received 204 permanent electrode implants. The average follow-up duration was 24 months. Complications related to the DBS hardware were seen in 11 patients (7.6%). There were two lead fractures (1.4%) and nine infections (6.2%) including two erosions (1.4%). There was a significantly greater risk of infection in patients who underwent staged procedures with externalization. In patients with straight scalp incisions, the rate of infection was higher than that seen with curved incisions.

Conclusion:

Hardware complications were not common. A period of externalization of the electrodes for a stimulation trial was associated with an increased infection rate. It is also possible that a straight scalp incision instead of curvilinear incision may lead to an increase in the rate of infection. With a clear understanding of the accepted DBS device indications and their potential complications, patients may make a truly informed decision about DBS technology.

Résumé:

RÉSUMÉ:Introduction:

La stimulation cérébrale profonde (SCP) est de plus en plus utilisée à travers le monde dans le traitement de la maladie de Parkinson, de la dystonie, du tremblement et de la douleur. Comme dans tout système comportant un implant, la SCP donne lieu à une nouvelle problématique reliée à l’appareillage utilisé. L’infection, le mauvais fonctionnement et le déplacement des électrodes ou leur fracture peut augmenter la morbidité. On devrait tenir compte de ces facteurs quand on évalue le rapport risques/bénéfices de ce traitement. Cette étude souligne plusieurs facteurs qui augmentent les complications de la SCP dues à l’appareillage.

Méthodes:

Les auteurs ont effectué une analyse prospective de leurs patients qui recevaient ce traitement dans deux centres canadiens au cours d’une période de quatre ans.

Résultats:

Cent quarante-quatre patients ont reçu 204 implants d’électrodes permanentes. La durée moyenne du suivi a été de 24 mois. On a observé des complications dues à l’appareillage utilisé pour la SCP chez 11 patients (7,6%), dont deux fractures d’électrodes (1,4%) et neuf infections (6,2%) incluant deux érosions (1,4%). Le risque d’infection était significativement supérieur pour les patients chez qui l’implantation était faite par étapes avec externalisation. Le taux d’infection était plus élevé chez les patients qui avaient subi une incision rectiligne du cuir chevelu par rapport à ceux dont l’incision était incurvée.

Conclusion:

Les complications dues à l’appareillage n’étaient pas fréquentes. Une période d’externalisation des électrodes pour procéder à un essai de stimulation était associée à un taux d’infection plus élevé. Il est également possible qu’une incision rectiligne du cuir chevelu plutôt qu’une incision courbe puisseaugmenter le taux d’infection. Les patients peuvent prendre une décision vraiment éclairée s’ils comprennent les indications et les complications possibles de la SCP.

Type
Original Articles
Copyright
Copyright © The Canadian Journal of Neurological 2005

References

1. Benabid, AL, Pollak, P, Gervason, C, et al. Long term suppression oftremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet 1991; 337: 403406.Google Scholar
2. Benabid, AL, Pollak, P, Gao, D, et al. Chronic electrical stimulation ofthe ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. J Neurosurgery 1996; 84: 203214.CrossRefGoogle Scholar
3. Koller, W, Pawha, R, Busenbark, K, et al. High-frequency unilateralthalamic stimulation in the treatment of essential and parkinsonian tremor. Ann Neurol 1997; 42: 292299.Google Scholar
4. Levy, R, Lamb, S, Adams, J. Treatment of chronic pain by deep brainstimulation: Long term follow up and review of the literature. Neurosurgery 1987; 21: 885893.CrossRefGoogle Scholar
5. Pollak, P, Fraix, V, Krack, P. et al: Treatment results. Parkinson’sdisease. Mov Disord 2002; 17(Suppl 3): 7583.Google Scholar
6. Hariz, MI. Complications of deep brain stimulation surgery. MovDisord 2002; 17(Suppl 3): 162166.Google Scholar
7. Hariz, MI, Shamsgovara, P, Johanson, F, Hariz, G, Fodstad, H. Tolerance and tremor rebound following long term chronic thalamic stimulation for parkinsonian and essential tremor. Stereotact Funct Neurosurg 1999; 72: 208218.Google Scholar
8. Limousin, P, Speelman, D, Gielen, F, et al. Multicentre Europeanstudy of thalamic stimulation in parkinsonian and essential tremor. J Neurol Neurosurg Psychiatry 1999; 66: 289296.Google Scholar
9. Bendok, B, Levy, R. Brain stimulation for persistent painmanagement. In: Gildenberg, P, Tasker, P (Eds). Textbook of Stereotactic and Functional Neurosurgery. New York: McGraw-Hill, Inc., 1998: 15391546.Google Scholar
10. Benabid, AL, Koudsie, A, Benazzouz, A. Subthalamic nucleus deepbrain stimulation. In: Lozano, AM (Ed). Movement Disorders Surgery. Progress in Neurological Surgery. Basel: Karger, 2000: 196226.Google Scholar
11. Beric, A, Kelly, PJ, Rezai, A, et al. Complications of deep brainstimulation surgery. Stereotact Funct Neurosurg 2001; 77: 7378.Google Scholar
12. Koller, WC, Lyons, KE, Wilkinson, SB, et al. Long term safety andefficacy of unilateral deep brain stimulation of the thalamus in essential tremor. Mov Disord 2001; 16: 464468.Google Scholar
13. Kondziolka, D, Whiting, D, Germanwala, A, et al. Hardware-relatedcomplications after placement of thalamic deep brain stimulator systems. Stereotact Funct Neurosurg 2002; 79: 228233.Google Scholar
14. Lyons, KE, Koller, WC, Wilkinson, SB, et al. Surgical and device-related events with deep brain stimulation (abstract). Neurology 2001; 56(Suppl 3): A146.Google Scholar
15. Oh, MY, Abosch, A, Kim, SH, et al. Long term hardware-relatedcomplications of deep brain stimulation. Neurosurgery 2002; 50: 12681276.Google Scholar
16. Schuurman, RP, Bosch, A, Bossuyt, P, et al. A comparison ofcontinuous thalamic stimulation and thalamotomy for suppression of severe tremor. N Engl J Med 2000; 342: 461467.Google Scholar
17. The Deep Brain Stimulation for Parkinson’s Disease Study Group. Deep brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in parkinson’s disease. N Engl J Med 2001; 345: 956963.Google Scholar
18. Umemura, A, Jaggi, LJ, Hurtig, IH, et al. Deep brain stimulation formovement disorders: morbidity and mortality in 109 patients. J Neurosurg 2003; 98: 779784.CrossRefGoogle ScholarPubMed
19. Vingerhoets, FJ, Russmann, H, Pollo, C, et al. Results and adverseevents in 50 consecutive patients treated by STN-DBS. Mov Disord 2002; 17(Suppl 5): P666.Google Scholar
20. Merello, M, Gammarota, A, Leiguarda, R, et al. Delayed intracerebral electrode infection after bilateral STN implantation for Parkinson’s disease. Mov Disord 2001; 16: 168170.Google Scholar
21. Kumar, K, Toth, C, Nath, R. Deep brain stimulation for intractablepain: a 15-year experience. Neurosurgery 1997; 40: 736747.Google Scholar
22. Schwalb, JM, Riina, HA, Skolnick, B, et al. Revision of deep brainstimulation for tremor. Technical note. J Neurosurg 2001, 94: 10101012.CrossRefGoogle Scholar
23. Di Rocco, C, Iannell, A. Complications of CSF shunting. In: DiRocco, C (Ed). The Treatment of Infantile Hydrocephalus. Boca Raton: CRC Press Inc., 1987: 79153.Google Scholar
24. Joint, C, Nandi, D, Parkin, S, et al. Hardware-related problems of deep brain stimulation. Mov Disord 2002; 17(Suppl 3): 175180.Google Scholar
25. Pahwa, R, Lyons, KE, Wilkinson, SB, et al. One-year follow-up ofbilateral subthalamic stimulation in Parkinson’s disease. Neurology 2001; 56(Suppl 1): A146.Google Scholar
26. Favre, J, Taha, JM, Steel, T, et al. Anchoring of deep brain stimulationelectrodes using a microplate. Technical note. J Neurosurg 1996; 85: 11811183.CrossRefGoogle Scholar
27. Ray, CD. Burr-hole ring-cup and electrode anchoring device. Technical note. J Neurosurg 1981; 55: 10041006.Google Scholar
28. Mohit, A, Samii, A, Slimp, JC, et al. Mechanical failure of the electrode wire in deep brain stimulation (abstract). Mov Disord 2002; 17(Suppl5): 648.Google Scholar
29. Jimenez, JC, Salazar, PM, Finocchio, JA, et al. STN -DBScomplicated with cyanoacrylate granullomas and secondary staphylococcal infection. Mov Disord 2002; 17(Suppl 5): 673.Google Scholar