Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-21T04:21:04.111Z Has data issue: false hasContentIssue false

Point-of-Care Ultrasound to Detect Acute Large Vessel Occlusions in Stroke Patients: A Proof-of-Concept Study

Published online by Cambridge University Press:  25 July 2022

Pardes Habib*
Affiliation:
Department of Neurology, University Hospital, RWTH Aachen University, Germany JARA-BRAIN Institute of Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Germany
Ivaylo Dimitrov
Affiliation:
Department of Neurology, University Hospital, RWTH Aachen University, Germany
João Pinho
Affiliation:
Department of Neurology, University Hospital, RWTH Aachen University, Germany
Kolja Schürmann
Affiliation:
Department of Neurology, University Hospital, RWTH Aachen University, Germany
Jan Philipp Bach
Affiliation:
Department of Neurology, University Hospital, RWTH Aachen University, Germany
Martin Wiesmann
Affiliation:
Department of Diagnostic and Interventional Neuroradiology, University Hospital, RWTH Aachen University, Germany
Jörg B. Schulz
Affiliation:
Department of Neurology, University Hospital, RWTH Aachen University, Germany JARA-BRAIN Institute of Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Germany
Arno Reich
Affiliation:
Department of Neurology, University Hospital, RWTH Aachen University, Germany
Omid Nikoubashman
Affiliation:
Department of Diagnostic and Interventional Neuroradiology, University Hospital, RWTH Aachen University, Germany
*
Corresponding author: Pardes Habib, MD/PhD, Department of Neurology, University Hospital, RWTH Aachen University, Pauwelsstr. 30, D-52074 Aachen, Germany. Email: phabib@ukaachen.de

Abstract:

Background and purpose:

A primary admission of patients with suspected acute ischemic stroke and large vessel occlusion (LVO) to centers capable of providing endovascular stroke therapy (EVT) may induce shorter time to treatment and better functional outcomes. One of the limitations in this strategy is the need for accurately identifying LVO patients in the prehospital setting. We aimed to study the feasibility and diagnostic performance of point-of-care ultrasound (POCUS) for the detection of LVO in patients with acute stroke.

Methods:

We conducted a proof-of-concept study and selected 15 acute ischemic stroke patients with angiographically confirmed LVO and 15 patients without LVO. Duplex ultrasonography (DUS) of the common carotid arteries was performed, and flow profiles compatible with LVO were scored independently by one experienced and one junior neurologist.

Results:

Among the 15 patients with LVO, 6 patients presented with an occlusion of the carotid-T and 9 patients presented with an M1 occlusion. Interobserver agreement between the junior and the experienced neurologist was excellent (kappa = 0.813, p < 0.001). Flow profiles of the CAA allowed the detection of LVO with a sensitivity of 73%, a positive predictive value of 92 and 100%, and a c-statistics of 0.83 (95%CI = 0.65–0.94) and 0.87 (95%CI = 0.69–0.94) (experienced neurologist and junior neurologist, respectively). In comparison with clinical stroke scales, DUS was associated with better trade-off between sensitivity and specificity.

Conclusion:

POCUS in acute stroke setting is feasible, it may serve as a complementary tool for the detection of LVO and is potentially applicable in the prehospital phase.

Résumé :

RÉSUMÉ :

L’échographie au point d’intervention dans la détection des occlusions aiguës de gros vaisseaux dans les accidents vasculaires cérébraux : étude de validation de principe.

Contexte et but :

Le fait de diriger directement les patients chez qui il y a présomption d’un AVC ischémique aigu et d’une occlusion d’un gros vaisseau (OGV) vers des centres en mesure de procéder à un traitement endovasculaire de l’AVC peut réduire le temps d’attente du traitement et donner de meilleurs résultats fonctionnels. Toutefois, l’une des limites de cette façon de faire est la nécessité de repérer exactement les patients atteints d’une OGV en milieu préhospitalier. Aussi l’étude visait-elle à établir la faisabilité et la performance diagnostique de l’échographie au point d’intervention (EPI) dans la détection des occlusions de gros vaisseaux (OGV) dans les accidents vasculaires cérébraux (AVC) aigus.

Méthode :

Il s’agit d’une étude de validation de principe en vue de laquelle ont été sélectionnés 15 patients ayant subi un AVC ischémique aigu associé à une OGV confirmée par angiographie et 15 patients sans OGV. Une échographie Doppler en mode duplex (EDD) des artères carotides communes a été effectuée, après quoi les courbes de débit sanguin compatibles avec une OGV ont été cotées par un neurologue expérimenté et un neurologue débutant, chacun de leur côté.

Résultats :

Parmi les 15 patients chez qui une OGV a été observée, 6 présentaient une occlusion de la T carotide et 9, une occlusion du segment M1. La fiabilité interobservateurs entre les deux neurologues était excellente (kappa = 0,813; p < 0,001). Les courbes de débit associées à l’angiopathie amyloïde cérébrale ont permis la détection de l’OGV; la sensibilité était de 73 %; la valeur prévisionnelle positive, de 92 % et de 100 %; et les valeurs de concordance entre le neurologue expérimenté et le neurologue débutant, de 0,83 (IC à 95 % = 0,65-0,94) et de 0,87 (IC à 95 % = 0,69-0,94), respectivement. Comparativement aux échelles cliniques de l’AVC, l’EDD offrait le meilleur compromis entre la sensibilité et la spécificité.

Conclusion :

L’EPI en phase aiguë de l’AVC s’est révélée une technique faisable, pouvant servir d’examen complémentaire dans la détection des OGV et offrant un potentiel d’application en phase préhospitalière.

Type
Original Article
Copyright
© Department of Diagnostic and Interventional Neuroradiology, University Hospital, RWTH Aachen University, Germany, 2022. Published by Cambridge University Press on behalf of Canadian Neurological Sciences Federation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Pardes Habib and Ivaylo Dimitrov contributed equally to this work.

References

Powers, WJ, Rabinstein, AA, Ackerson, T, et al. guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2018;49:e46e110.CrossRefGoogle ScholarPubMed
Saver, JL, Goyal, M, van der Lugt, A, et al. Time to treatment with endovascular thrombectomy and outcomes from ischemic stroke: a meta-analysis. JAMA. 2016;316:1279–88s.CrossRefGoogle ScholarPubMed
Mocco, J, Fargen, KM, Goyal, M, et al. Neurothrombectomy trial results: stroke systems, not just devices, make the difference. Int J Stroke. 2015;10:990–3.CrossRefGoogle Scholar
Campbell, BC, Donnan, GA, Davis, SM. Optimizing systems of care for endovascular thrombectomy in ischemic stroke: drip and ship versus mothership. Circulation. 2017;136:2322–4.CrossRefGoogle ScholarPubMed
Zhao, W, Ma, P, Chen, J, Yue, X. Direct admission versus secondary transfer for acute ischemic stroke patients treated with thrombectomy: a systematic review and meta-analysis. J Neurol. 2021;268:3601–9.CrossRefGoogle ScholarPubMed
Nikoubashman, O, Pauli, F, Schurmann, K, et al. Transfer of stroke patients impairs eligibility for endovascular stroke treatment. J Neuroradiol. 2018;45:4953.CrossRefGoogle ScholarPubMed
de la Ossa, NP, Abilleira, S, Jovin, TG, et al. Effect of direct transportation to thrombectomy-capable center vs local stroke center on neurological outcomes in patients with suspected large-vessel occlusion stroke in nonurban areas: the RACECAT randomized clinical trial. JAMA. 2002;327:1782–94.CrossRefGoogle Scholar
Duvekot, MH, Venema, E, Rozeman, AD, et al. Comparison of eight prehospital stroke scales to detect intracranial large-vessel occlusion in suspected stroke (PRESTO): a prospective observational study. Lancet Neurol. 2021;20:213–21.CrossRefGoogle ScholarPubMed
Singer, OC, Dvorak, F, de Rochemont, RM, Lanfermann, H, Sitzer, M, Neumann-Haefelin, T. A simple 3-item stroke scale: comparison with the National Institutes of Health Stroke Scale and prediction of middle cerebral artery occlusion. Stroke. 2005;36:773–6.CrossRefGoogle ScholarPubMed
Llanes, JN, Kidwell, CS, Starkman, S, Leary, MC, Eckstein, M, Saver, JL. The Los Angeles Motor Scale (LAMS): a new measure to characterize stroke severity in the field. Prehosp Emerg Care. 2004;8:4650.CrossRefGoogle ScholarPubMed
de la Ossa Pérez, N, Carrera, D, Gorchs, M, et al. Design and validation of a prehospital stroke scale to predict large arterial occlusion: the rapid arterial occlusion evaluation scale. Stroke. 2014;45:8791.CrossRefGoogle Scholar
Katz, BS, McMullan, JT, Sucharew, H, Adeoye, O, Broderick, JP. Design and validation of a prehospital scale to predict stroke severity: Cincinnati Prehospital Stroke Severity Scale. Stroke. 2015;46:1508–12.CrossRefGoogle ScholarPubMed
Heldner, MR, Hsieh, K, Broeg-Morvay, A, et al. Clinical prediction of large vessel occlusion in anterior circulation stroke: mission impossible? J Neurol. 2016;263:1633–40.CrossRefGoogle ScholarPubMed
Noorian, AR, Sanossian, N, Shkirkova, K, et al. Los Angeles Motor Scale to identify large vessel occlusion: prehospital validation and comparison with other screens. Stroke. 2018;49:565–72.CrossRefGoogle ScholarPubMed
Alexandrov, AV. Neurovascular examination: the rapid evaluation of stroke patients using ultrasound waveform interpretation. Oxford: Blackwell Publishing Ltd; 2013.CrossRefGoogle Scholar
Kunz, WG, Hunink, MG, Almekhlafi, MA, et al. Public health and cost consequences of time delays to thrombectomy for acute ischemic stroke. Neurology. 2020;95:e2465e2475.CrossRefGoogle ScholarPubMed
Holodinsky, JK, Williamson, TS, Demchuk, AM, et al. Modeling stroke patient transport for all patients with suspected large-vessel occlusion. JAMA Neurol. 2018;75:1477–86.CrossRefGoogle ScholarPubMed
Harris, J. A review of mobile stroke units. J Neurol. 2021;268:3180–4.CrossRefGoogle ScholarPubMed
Kellner, CP, Sauvageau, E, Snyder, KV, et al. The VITAL study and overall pooled analysis with the VIPS non-invasive stroke detection device. J Neurointerv Surg. 2018;10:1079–84.CrossRefGoogle ScholarPubMed
Sergot, PB, Maza, AJ, Derrick, BJ, et al. Portable neuromonitoring device detects large vessel occlusion in suspected acute ischemic stroke. Stroke. 2021;52:1437–40.CrossRefGoogle ScholarPubMed
Thorpe, SG, Thibeault, CM, Canac, N, Wilk, SJ, Devlin, T, Hamilton, RB. Decision criteria for large vessel occlusion using transcranial doppler waveform morphology. Front Neurol. 2018;9:847.CrossRefGoogle ScholarPubMed
Schlachetzki, F, Herzberg, M, Holscher, T, et al. Transcranial ultrasound from diagnosis to early stroke treatment: Part 2: Prehospital neurosonography in patients with acute stroke: the Regensburg stroke mobile project. Cerebrovasc Dis. 2012;33:262–71.CrossRefGoogle ScholarPubMed
Herzberg, M, Boy, S, Holscher, T, et al. Prehospital stroke diagnostics based on neurological examination and transcranial ultrasound. Crit Ultrasound J. 2014;6:3.CrossRefGoogle ScholarPubMed
Gahn, G, Gerber, J, Hallmeyer, S, et al. Contrast-enhanced transcranial color-coded duplexsonography in stroke patients with limited bone windows. AJNR Am J Neuroradiol. 2000;21:509–14.Google ScholarPubMed
Supplementary material: File

Habib et al. supplementary material

Tables S1-S3

Download Habib et al. supplementary material(File)
File 24.7 KB