Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-22T15:01:20.218Z Has data issue: false hasContentIssue false

Neurotransmitter and Receptor Deficits in Senile Dementia of the Alzheimer Type

Published online by Cambridge University Press:  18 September 2015

R. Quirion*
Affiliation:
Douglas Hospital Research Centre and Dept. of Psychiatry, McGill University, Verdun, Québec
J.C. Martel
Affiliation:
Douglas Hospital Research Centre and Dept. of Psychiatry, McGill University, Verdun, Québec
Y. Robitaille
Affiliation:
Douglas Hospital Research Centre and Dept. of Psychiatry, McGill University, Verdun, Québec Montreal Neurological Institute, Montreal, Québec
P. Etienne
Affiliation:
Ciba-Geigy Corporation, Summit, New Jersey
P. Wood
Affiliation:
Ciba-Geigy Corporation, Summit, New Jersey
N.P.V. Nair
Affiliation:
Douglas Hospital Research Centre and Dept. of Psychiatry, McGill University, Verdun, Québec
S. Gauthier
Affiliation:
Montreal Neurological Institute, Montreal, Québec
*
Douglas Hospital Research Centre, 6875 Blvd. LaSalle, Verdun, Québec, Canada H4H 1R3
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Multiple neurotransmitter systems are affected in senile dementia of the Alzheimer's type (SDAT). Among them, acetylcholine has been most studied. It is now well accepted that the activity of the enzyme, choline acetyltransferase (ChAT) is much decreased in various brain regions including the frontal and temporal cortices, hippocampus and nucleus basalis of Meynert (nbm) in SDAT. Cortical M2-muscarinic and nicotinic cholinergic receptors are also decreased but only in a certain proportion (30-40%) of SDAT patients. For other systems, it appears that cortical serotonin (5-HT)-type 2 receptor binding sites are decreased in SDAT. This diminution in 5-HT2 receptors correlates well with the decreased levels of somatostatin-like immunoreactive materials found in the cortex of SDAT patients. Cortical somatostatin receptor binding sites are decreased in about one third of SDAT patients. Finally, neuropeptide Y and neuropeptide Y receptor binding sites are distributed in areas enriched in cholinergic cell bodies and nerve fiber terminals and it would be of interest to determine possible involvement of this peptide in SDAT. Thus, it appears that multi-drug clinical trials should be considered for the treatment of SDAT.

Type
Biochemical Studies
Copyright
Copyright © Canadian Neurological Sciences Federation 1986

References

1.Alzheimer, A.Uber eine eigenartige Erkankung der Himrinde. Allegemeine Zeitschrift fur Psychiatrie und Psychisch-Gerichtlich. Médecine 1907; 64: 146148.Google Scholar
2.McGeer, PL.Aging, Alzheimer’s Disease, and the cholinergic system. Can J Physiol Pharmacol 1984; 62: 741754.CrossRefGoogle ScholarPubMed
3.Ball, MJ.Neurofibrillary tangles and granulovacuolar degenera-tion in the hippocampus with ageing and dementia. Acta Neuropathol 1977; 37: 111118.CrossRefGoogle Scholar
4.Bowen, DJ, Spillane, JA, Curzon, G, et al. Accelerated aging or selective neuronal loss as an important cause of dementiaq. Lancet 1979; 1: 1114.Google ScholarPubMed
5.Candy, M, Perry, RH, Perry, EK, et al. Pathological changes in the nucleus of Meynert in Alzheimer’s and Parkinson’s diseases. J Neurol Sci 1983; 59: 277289.CrossRefGoogle ScholarPubMed
6.Perry, EK, Tomlinson, BE, Blessed, G, et al. Correlation of cholin- ergic abnormalities with senile plaques and mental test scores in senile dementia. Br Med J 1978; 2: 14571459.CrossRefGoogle Scholar
7.Lehmann, J, Nagy, Jl, Atmadia, S, et al. The nucleus basalis magnocellularis: the origin of a cholinergic projection to the neocortex of the rat. Neuroscience 1980; 5: 11611174.CrossRefGoogle Scholar
8.Coyle, JT, Price, DL and De Long, M.Alzheimer’s disease: a disor- der of cortical cholinergic innervation. Science 1983; 219: 11841190.CrossRefGoogle Scholar
9.Whitehouse, PJ, Price, DL, Struble, RG, et al. Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 1982; 215: 12371239.CrossRefGoogle ScholarPubMed
10.Davies, P and Maloney, AJR.Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 1976; 2: 1403.CrossRefGoogle ScholarPubMed
11.Johnston, MV, McKinney, M and Coyle, JT.Evidence for a cholin- ergic projection to the neocortex from neurons in basal forebrain. Proc Natl Acad Sci USA 1979; 76: 53925396.CrossRefGoogle Scholar
12.Nagai, T, McGeer, PL, Peng, JH, et al. Choline acetyltransferase immunohistochemistry in brains of Alzheimer’s disease patients and controls. Neurosci Lett 1983; 36: 195199.CrossRefGoogle ScholarPubMed
13.Mesulam, MM and van Hoesen, GW.Acetylcholinesterase-rich projections from the basal forebrain of the rhesus monkey to neocortex. Brain Res 1976; 109: 152157.CrossRefGoogle ScholarPubMed
14.Kitt, CA, Price, DL, Struble, RG, et al. Evidence for cholinergic neurites in senile plaques. Science 1984; 226: 14431445.CrossRefGoogle ScholarPubMed
15.Morrison, JH, Rogers, J, Scherr, S, et al. Somatostatin immunoreac- tivity in neuritic plaques of Alzheimer’s patients. Nature 1985; 314: 9092.CrossRefGoogle Scholar
16.Roberts, GW, Crow, TJ and Polak, JM.Location of neuronal tan- gles in somatostatin neurones in Alzheimer’s disease. Nature 1985; 314: 9296.CrossRefGoogle Scholar
17.Armstrong, DM, LeRoy, S, Sheilds, D, et al. Somatostatin-like immunoreactivity within neuritic plaques. Brain Res 1985; 338: 7179.CrossRefGoogle ScholarPubMed
18.Dawbarn, D and Emson, PC.Neuropeptide Y-like immunoreactiv- ity in neuritic plaques of Alzheimer’s disease. Biochem Biophys Res Commun 1985; 126: 289294.CrossRefGoogle Scholar
19.Armstrong, DM and Terry, RD.Substance P immunoreactivity within neuritic plaques. Neurosci Lett 1985; 58: 139144.CrossRefGoogle ScholarPubMed
20.Walker, LC, Kitt, CA, Struble, RJ, et al. Glutamic acid decarboxylase- like immunoreactive neurites in senile plaques. Neurosci Lett 1985;59: 165169.CrossRefGoogle ScholarPubMed
21.Bird, TD, Stranaham, S, Sumi, SM, et al. Alzheimer’s Disease: choline acetyltransferase activity in brain tissue from clinical and pathological subgroups. Ann Neurol 1983; 14: 284293.Google Scholar
22.Bartus, RT, Dean, RD, Beer, B, et al. The cholinergic hypothesis of geriatric memory dysfunction. Science 1982; 217: 408417.CrossRefGoogle ScholarPubMed
23.McGeer, PL, McGeer, EG, Suzuki, J, et al. Aging, Alzheimer’s disease and the cholinergic system of the basal forebrain. Neurology 1984; 34: 741745.CrossRefGoogle ScholarPubMed
24.Henke, H and Lang, W.Cholinergic enzymes in neocortex, hippocampus and basal forebrain of non-neurological and senile dementia of Alzheimer type patients. Brain Res 1983,267:281291.CrossRefGoogle ScholarPubMed
25.Svendsen, G, Rassor, CG and Selkoe, DJ.Neurofibrillary degenera- tion in cholinergic and non cholinergic neurons of the basal forebrain in Alzheimer’s Disease. J Neuropath Exptl Neurol 1984; 43: 307319.CrossRefGoogle Scholar
26.Whitehouse, PJ, Price, DL, Clark, AW, et al. Alzheimer’s disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 1981; 10: 122126.CrossRefGoogle ScholarPubMed
27.Rossor, MN, Garrett, NJ, Johnson, AL, et al. A postmortem study of the cholinergic and GABA systems in senile dementia. Brain 1982; 105: 313330.CrossRefGoogle ScholarPubMed
28.Etienne, P, Robitaille, Y, Wood, P, et al. Neuritic plaques and choline acetyltransferase activity in advanced Alzheimer’s disease. Neuroscience (in press).Google Scholar
29.Johns, CA, Haroutunian, V, Greenwald, BS, et al. Development of cholinergic drugs for the treatment of Alzheimer’s disease. Drug Develop Res 1985; 5: 7796.CrossRefGoogle Scholar
30.Gottfries, CG, Adolfsson, R, Aquilonius, SM, et al. Biochemical changes in dementia disorders of Alzheimer type (AD/SDAT). Neurobiol Aging 1983; 4: 261271.CrossRefGoogle ScholarPubMed
31.Adolfsson, R, Gottfries, CG, Roos, BE, et al. Changes in brain catecholamines in patients with dementia of Alzheimer type. Br J Psychiat 1979; 135: 216223.CrossRefGoogle ScholarPubMed
32.Yates, CM, Simpson, J, Gordon, A, et al. Catecholamines and cholinergic enzymes in pre-senile and senile Alzheimer-type dementia and Down’s syndrome. Brain Res 1983; 280: 119126.CrossRefGoogle ScholarPubMed
33.Arai, H, Kosaka, K and lizuka, T.Changes in biogenic amines and their metabolites in postmortem brains from patients with Alzheimer’s type dementia. J Neurochem 1984; 43: 388393.Google Scholar
34.Cross, AJ, Crow, TJ, Johnson, JA, et al. Monoamine metabolism in senile dementia of Alzheimer type. J Neurol Sci 1983; 60:383392.CrossRefGoogle ScholarPubMed
35.Crow, TJ, Cross, AJ, Cooper, SJ, et al. Neurotransmitter receptors and monoamine metabolites in the brains of patients with Alzheimer-type dementia and depression, and suicides. Neuropharmacology 1984; 23: 15611569.CrossRefGoogle ScholarPubMed
36.Hardy, J, Adolfsson, R, Alafuzoff, , et al. Transmitter deficits in Alzheimer’s disease. Neurochem Int 1985; 7: 545563.CrossRefGoogle ScholarPubMed
37.Bowen, DM, Allen, SJ, Benton, SJ, et al. Biochemical assessment of serotonergic and cholinergic dysfunction and cerebral atrophy in Alzheimer’s disease. J Neurochem 1983; 41: 266272.CrossRefGoogle ScholarPubMed
38.Cross, AJ, Crow, TJ, Johnson, JA, et al. Studies on neurotransmit- ter receptor systems in neocortex and hippocampus in senile dementia of the Alzheimer type. J Neurol Sci 1984, 64: 109117.CrossRefGoogle Scholar
39.Reynolds, GP, Arnold, L., Rossor, MN, et al. Reduced binding of [3H]ketanserin to cortical 5-HT2 receptors in senile dementia of the Alzheimer type. Neurosci Lett 1984; 44: 4751.CrossRefGoogle ScholarPubMed
40.Cross, AJ, Crow, TJ, Ferrier, IN, et al. Serotonin receptor changes in dementia of the Alzheimer type. J Neurochem 1984; 43: 15741581.CrossRefGoogle ScholarPubMed
41.Marcusson, J, Ljung, L, Finch, C, et al. Receptor studies in aging and senile dementia. In: Gottfries, CG, ed. Normal Aging, Alzheimer’s disease and senile dementia. Bruxelles: Editions de l’Université de Bruxelles, 1985: 151153.Google Scholar
42.Volicer, L, Langlais, P, Matson, WR, et al. Serotoninergic system in dementia of the Alzheimer type. Arch Neurol 1985; 42: 11581161.CrossRefGoogle ScholarPubMed
43.Terry, RD and Katzman, R.Senile dementia of the Alzheimer type. Ann Neurol 1983; 14: 497506.CrossRefGoogle ScholarPubMed
44.Davies, P, Katzman, R and Terry, RD.Reduced somatostatin-like immunoreactivity in cases of Alzheimer’s disease and Alzheimer senile dementia. Nature 1980; 288: 279280.CrossRefGoogle Scholar
45.Rossor, MN, Emson, PC, Mountjoy, CQ, et al. Reduced amounts of immunoreactive somatostatin in the temporal cortex in senile dementia of Alzheimer type. Neurosci Lett 1980; 20: 373377.CrossRefGoogle ScholarPubMed
46.Perry, EK, Blessed, G, Tomlinson, BE, et al. Neurochemical activi- ties in human temporal lobe related to aging and Alzheimer type changes. Neurobiol Aging 1981; 2: 251256.CrossRefGoogle Scholar
47.Soininen, H, Jolkkonen, JT, Reinikainen, KJ, et al. Reduced cholin- esterase activity and somatostatin like immunoreactivity in the cerebrospinal fluid of patients with dementia of the Alzheimer type. J Neurol Sci 1984; 63: 167172.CrossRefGoogle Scholar
48.Wood, PL, Etienne, P, Gauthier, LS, et al. Reduced lumbar CSF somatostatin in Alzheimer’s disease. Life Sci 1982;31:20732079.CrossRefGoogle ScholarPubMed
49.Joynt, RJ and McNeill, TH.Neuropeptides in aging and dementia. Peptides 1984; 5, suppl 1: 269274.CrossRefGoogle ScholarPubMed
50.Arai, H, Moroji, T and Kosaka, K.Somatostatin and vasoactive intestinal polypeptide in postmortem brains from patients with Alzheimer-type dementia. Neurosci Lett 1984; 52: 7378.CrossRefGoogle ScholarPubMed
51.Beal, MF, Mazurek, MF, Tran, VT, et al. Reduced numbers of somatostatin receptors in the cerebral cortex in Alzheimer’s disease. Science 1985; 229: 289291.CrossRefGoogle ScholarPubMed
52.Greenamyre, JT, Penney, JB, Young, AB, et al. Alterations in L-glutamate binding in Alzheimer’s and Huntington’s diseases. Science 1985; 227: 14961499.CrossRefGoogle ScholarPubMed
53.Beal, MF, Mazurek, MF, Chalta, G.et al. Neuropeptide Y immuno- reactivity in reduced in Alzheimer’s disease cerebral cortex. Soc Neurosci Abstr 1985; 11: 1119.Google Scholar
54.Fonnum, F.Radiochemical assays for choline acetyltransferase and acetylcholinesterase. In: Marks, N and Rodnight, R, eds. Research Methods in Neurochemistry. Plenum Press, New York 1975: 253275.CrossRefGoogle Scholar
55.Sims, NR, Bowen, DM, Allen, SJ, et al. Presynaptic cholinergic dysfunction in patients with dementia. J Neurochem 1983; 40: 503509.CrossRefGoogle ScholarPubMed
56.Francis, PT, Palmer, AM, Sims, NR, et al. Neurochemical studies of early onset Alzheimer’s disease. New Engl J Med 1985; 313: 711.CrossRefGoogle ScholarPubMed
57.Wood, PL, Etienne, P, Lal, S, et al. A postmortem comparison of the cortical cholinergic system in Alzheimer’s disease and Pick’s disease. J Neurol Sci 1983; 62: 201207.CrossRefGoogle ScholarPubMed
58.Quirion, R.Comparative localization of putative pre- and postsyn- aptic markers of muscarinic cholinergic nerve terminals in rat brain. Eur J Pharmacol 1985; 111: 287289.CrossRefGoogle Scholar
59.Quirion, R and Boksa, P.Autoradiographic distribution of musca- rinic [3H]acetylcholine receptors in rat brain: comparison with antagonists. Eur J Pharmacol 1986; 123: 170172.CrossRefGoogle Scholar
60.Whitehouse, PJ, Martino, AM, Antuono, PG, et al. Nicotinic acetyl- choline binding sites in Alzheimer’s disease. Brain Res 1986; 371: 146151.CrossRefGoogle Scholar
61.Schwartz, RD, McGee, R Jr and Kellar, KJ.Nicotinic cholinergic receptors labeled by [3H]acetylcholine in rat brain. Molec Pharmacol 1982; 22: 5662.Google ScholarPubMed
62.Reisine, TD, Yamamura, HI, Bird, ED, et al. Pre- and postsynaptic neurochemical alterations in Alzheimer’s disease. Brain Res 1978; 159: 477481.CrossRefGoogle ScholarPubMed
63.Davies, P and Verth, AH.Regional distribution of muscarinic acetylcholine receptors in normal and Alzheimer type dementia brains. Brain Res 1978; 138: 385392.CrossRefGoogle Scholar
64.Nordberg, A, Larsson, C, Adolfsson, R, et al. Muscarinic receptor compensation in hippocampus of Alzheimer patients. J Neural Transm 1983; 56: 1319.CrossRefGoogle ScholarPubMed
65.Palacios, JM.Autoradiographic localization of muscarinic cholin- ergic receptors in the hippocampus of patients with senile dementia. Brain Res 1982; 243: 173175.CrossRefGoogle Scholar
66.Potter, LT, Flynn, DD, Hanchett, HE, et al. Independent M, and M2 receptors: ligands, autoradiography and functions. Trends Pharmacol Sci 1984; Suppl January 2231.Google Scholar
67.Watson, M, Vickroy, TW, Roeske, WR, et al. Subclassification of muscarinic receptors based upon the selective antagonist pirenzepine. Trends Pharmacol Sci 1984; Suppl January, 911.Google Scholar
68.Mash, DC, Flynn, DD and Potter, LT. Loss of M2 muscarinic receptors in the cerebral cortex in Alzheimer’s disease and ex-perimentalcholinergicdenervation. Science 1985;228:11151117.CrossRefGoogle Scholar
69.Palacios, JM, Cortes, R, Probst, A, et al. Mapping of subtypes of muscarinic receptors in the human brain with receptor autoradiographic techniques. Trends Pharmacol Sci 1986; Supp 2 February, 5660.Google Scholar
70.Nordberg, A and Larsson, C.Studies of muscarinic and nicotinic binding sites in brain. Acta Physiol Scand 1980; Suppl 479: 1923.Google ScholarPubMed
71.Lang, W and Henke, H.Cholinergic receptor binding and autoradi- ography in brains of non-neurological and senile dementia of Alzheimer-type patients. Brain Res 1983; 267: 271280.CrossRefGoogle Scholar
72.Collier, B.Choline analogues: their use in studies of acetylcholine synthesis, storage and release. Can J Physiol Pharmacol 1986; 64: 341346.CrossRefGoogle ScholarPubMed
73.Rylett, RT, Ball, MJ and Colhoun, EH.Evidence for high affinity choline transport in synaptosomes prepared from hippocampus and neocortex of patients with Alzheimer’s disease. Brain Res 1983; 289: 169175.CrossRefGoogle ScholarPubMed
74.Rainbow, TC, Parsons, B and Wieczorek, CM.Quantitative autora- diography of [3H]hemicholinium-3 binding sites in rat brains. Eur J Pharmacol 1984; 102: 195196.CrossRefGoogle Scholar
75.Manaker, S, Wieczorek, CM and Rainbow, TC.Identification of sodium-dependent high affinity choline uptake sites in rat brain with [3H]hemicholinium-3. J Neurochem 1986; 46: 483488.CrossRefGoogle ScholarPubMed
76.Vickroy, TW, Roeske, WR and Yamamura, HI.Sodium-dependent high affinity binding of [3H]hemicholinium-3 in the rat brain: a potentially selective marker for presynaptic cholinergic sites. Life Sci 1984; 35: 23352343.CrossRefGoogle Scholar
77.Vickroy, TW, Fibiger, HC, Roeske, WR, et al. Reduced density of sodium-dependent [3H]hemicholinium-3 binding sites in the anterior cerebral cortex of rats following chemical destruction of the nucleus basalis magnocellularis. Eur J Pharmacol 1984; 102: 369370.CrossRefGoogle ScholarPubMed
78.Vickroy, TW, Roeske, WR, Gehlert, DR, et al. Quantitative light microscopic autoradiography of [3H]hemicholinium-3 binding sites in the rat central nervous system: a novel biochemical marker for mapping the distribution of cholinergic nerve terminals. Brain Res 1985; 329:368373.CrossRefGoogle ScholarPubMed
79.Watson, M, Vickroy, TW, Fibiger, HC, et al. Effects of bilateral ibotenate-induced lesions of the nucleus basalis magnocellularis upon selective cholinergic biochemical markers in the rat anterior cerebral cortex. Brain Res 1985; 346: 387391.CrossRefGoogle ScholarPubMed
80.Sandberg, K and Coyle, JT.Characterization of [3H]hemicholinium-3 binding associated with neuronal choline uptake sites in rat brain membranes. Brain Res 1985; 348: 321330.CrossRefGoogle ScholarPubMed
81.Quirion, R, Richard, J and Dam, TV.Evidence for the existence of serotonin type-2 receptors on cholinergic terminals in rat cortex. Brain Res 1985; 333: 345349.CrossRefGoogle ScholarPubMed
82.Bahr, BA and Parsons, SM.Demonstration of a receptor in Tor- pedo synaptic vesicles for the acetylcholine storage blocker l-trans-2-(4-phenyl [3,4-3H]piperidino)cyclohexanol. ProcNatl Acad Sci USA 1986; 83: 22672270.CrossRefGoogle Scholar
83.Marien, MR, Parsons, SM and Altar, CA.Brain receptor autoradiog-raphy of [3H]AH5183, a novel radioligand for cholinergic neurons. Can Coll Neuropsychopharmacol 9th Ann Meeting, Vancouver. Canada, May 1986.Google Scholar
84.Mann, DMA, Yates, PO and Marcyniu, B.Alzheimer’s presenile dementia, senile dementia of Alzheimer type and Down’s syndrome in middle age from an age related continuum of pathological changes. Neuropath appl Neurobiol 1984; 10: 185207.CrossRefGoogle ScholarPubMed
85.Ishii, T.Distribution of Alzheimer’s neurofibrillary changes in the brain stem and the hypothalamus of senile dementia. Acta Neuropath 1966; 6: 181187.CrossRefGoogle ScholarPubMed
86.Benton, JS, Bowen, DM, Allen, SJ, et al. Alzheimer’s disease as a disorder of the isodendritic core. Lancet 1982; 1: 456.CrossRefGoogle ScholarPubMed
87.Leroux, P, Quirion, R and Pelletier, G.Localization and character- ization of brain somatostatin receptors as studied with somatostatin-14 and somatostatin-28 receptor autoradiography. Brain Res 1985; 347: 7484.CrossRefGoogle Scholar
88.Vacsei, L, Bollok, I, Penke, B, et al. Somatostatin and (D-TrpR, D-Cys’4) somatostatin delay extinction and reverse electroconvulsive shock induced amnesia in rats. Psychoneuroendocrinology 1986; 11: 111116.CrossRefGoogle Scholar
89.Adrian, TE, Allen, JM, Bloom, SR, et al. Neuropeptide Y distribu- tion in human brain. Nature 1983; 306: 584586.CrossRefGoogle Scholar
90.Emson, PC and DeQuidt, ME.NPY-a new member of the pancre- atic polypeptide family. Trends Neurosci 1984; 7: 3135.CrossRefGoogle Scholar
91.O’Donohue, TL, Chronwall, BM, Pruss, RM, et al. Neuropeptide Y and peptide YY neuronal and endocrine systems. Peptides 1985; 6: 755768.CrossRefGoogle ScholarPubMed
92.Unden, A, Tatemoto, K, Mutt, V, et al. Neuropeptide Y receptor in the rat brain. Eur J Biochem 1985; 145: 525530.CrossRefGoogle Scholar
93.Saria, A, Theodorsson-Norheim, E and Lundberg, JM.Evidence for specific neuropeptide Y binding sites in rat brain synaptosomes. Eur J Pharmacol 1985; 107: 105107.CrossRefGoogle Scholar
94.Chang, RSL, Lotti, VJ, Chen, T-B, et al. Neuropeptide Y (NPY) binding sites in rat brain labeled with l25l-Bolton-Hunter NPY: Comparative potencies of various polypeptides on brain NPY binding and biological responses in the rat vas deferens. Life Sci 1985; 37: 21112122.CrossRefGoogle ScholarPubMed
95.Martel, JC, St-Pierre, S and Quirion, R.Neuropeptide Y receptors in rat brain: autoradiographic localization. Peptides 1986; 7: 5560.CrossRefGoogle ScholarPubMed
96.Allen, JM, Ferrier, lN, Roberts, GW, etal. Elevation of neuropeptide Y (NPY) in substantia innominata in Alzheimer’s type dementia. J Neurol Sci 1984:64: 325331.CrossRefGoogle ScholarPubMed
97.Chan-Palay, V, Lang, W, Allen, YS, et al. II. Cortical neurons immunoreactive with antisera against neuropeptide Y are altered in Alzheimer’s type dementia. J Comp Neurol 1985 ; 238:390400.CrossRefGoogle ScholarPubMed
98.Beal, MF, Mazurek, MF, Chatta, G, et al. Neuropeptide Y immuno- reactivity is reduced in Alzheimer’s Disease cerebral cortex. Soc Neurosi Abstr 1985; 11: 1119.Google Scholar
99.Harbaugh, RE, Roberts, DW, Coombs, DW, et al. Preliminary report: intracranial cholinergic drug infusion in patients with Alzheimer’s disease. Neurosurgery 1984; 15: 514518.CrossRefGoogle ScholarPubMed
100.Gauthier, S, Leblanc, R, Robitaille, Y, et al. Transmitter-replacement therapy in Alzheimer’s disease using intracerebroventricular infusions of receptor agonists. Can J Neurol Sci (in press).Google Scholar
101.Akers, RF, Lovinger, DM, Colley, PA, et al. Translocation of protein kinase C activity may mediate hippocampal long-term potentiation. Science 1986, 231: 587589.CrossRefGoogle ScholarPubMed
102.Leslie, SW, Chandler, LJ, Barr, EM, etal. Reduced calcium uptake by rat brain mitochondria and synaptosomes in response to aging. Brain Res 1985; 329: 177183.CrossRefGoogle ScholarPubMed
103.Thoenen, H and Edgar, D.Neurotrophic factors. Science 1985; 229: 238242.CrossRefGoogle ScholarPubMed