Hostname: page-component-5d59c44645-n6p7q Total loading time: 0 Render date: 2024-02-24T09:05:41.931Z Has data issue: false hasContentIssue false

Minocycline Protects Dopaminergic Neurons Against Long-Term Rotenone Toxicity

Published online by Cambridge University Press:  02 December 2014

Khaled Radad*
Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
Rudolf Moldzio
Institute for Medical Chemistry, Veterinary Medical University, Vienna, Austria
Wolf-Dieter Rausch
Institute for Medical Chemistry, Veterinary Medical University, Vienna, Austria
Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt.
Rights & Permissions [Opens in a new window]


Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In Parkinson's disease, most of current therapies only provide symptomatic treatment and so far there is no drug which directly affects the disease process.


To investigate the neuroprotective effects of minocycline against long-term rotenone toxicity in primary dopaminergic cell cultures.


Embryonic mice of 14-days-old were used for preparation of primary dopaminergic cell cultures. On the 6th day in vitro, prepared cultures were treated both with minocycline alone (1, 5, 10 and 20 μM) and concomitantly with rotenone (5 and 20 nM) and minocycline. Cultures were incubated at 37°C for six consecutive days. On Day 12 in vitro culture medium was aspirated and used for measuring lactate dehydrogenase. Cultured cells were fixed in 4% paraformaldhyde and stained immunohistochemically against tyrosine hydroxylase.


Treatment of cultures with 5 and 20 nM of rotenone significantly decreased the survival of tyrosine hydroxylase immunoreactive neurons by 27 and 31% and increased the release of lactate dehydrogenase into the culture medium by 31 and 236%, respectively compared to untreated controls. Minocycline (1, 5, 10 μM) significantly protected tyrosine hydroxylase immunoreactive neurons by 17, 15 and 19% and 13, 22 and 23% against 5 and 20 nM of rotenone, respectively compared to rotenone-treated cultures. Minocycline (only at 10 μM) significantly decreased the release of lactate dehydrogenase by 79% and 133% against 5 and 20 nM of rotenone, respectively.


Minocycline has neuroprotective potential against the progressive loss of tyrosine hydroxylase immunoreactive neurons induced by long-term rotenone toxicity in primary dopaminergic cultures.



Dans la maladie de Parkinson, la plupart des traitements actuels ne sont que symptomatiques et il n’existe toujours pas de médicament qui influence directement le processus morbide.


Le but de l’étude était d’examiner les effets neuroprotecteurs de la minocycline sur des cellules dopaminergiques en culture primaire contre la toxicité à long terme du roténone.


Des cellules dopaminergiques ont été prélevées chez des souris âgées de 14 jours et mises en culture primaire. Au sixième jour in vitro, les cultures ont été traitées soit par la minocycline seule (1, 5, 10 et 20 μM) ou par le roténone (5 et 20 ηM) et la minocycline. Les cultures ont été incubées à 37°C pendant six jours consécutifs. Au douzième jour in vitro, le milieu de culture a été aspiré et utilisé pour mesurer la déshydrogénase lactique (LDH). Les cellules cultivées étaient alors fixées dans la paraformaldéhyde à 4% et colorée par immunohistochimie pour révéler la tyrosine-hydroxylase.


Le traitement des cellules par le roténone à 5 et 20 ηM a diminué significativement la survie des neurones contenant de la tyrosine-hydroxylase, soit une diminution de 27% et de 31% respectivement et a augmenté la libération de LDH dans le milieu de culture de 31% et 236% respectivement par rapport aux cultures témoins. La minocycline (1, 5, 10 μM) a protégé de façon significative les neurones contenant de la tyrosine-hydroxylase, soit une protection de 17%, 15% et 19% et de 13%, 22% et 23% contre le roténone à 5 et à 20 ηM respectivement. La minocycline (seulement à 10 μM) a diminué significativement la libération de la LDH de 79% et 133% dans les cultures traitées par le roténone à 5 et à 20 ηM respectivement.


La minocycline a eu un effet neuroprotecteur contre la perte progressive de neurones contenant de la tyrosine-hydroxylase induite par la toxicité à long terme du roténone dans les cultures primaires de cellules dopaminergiques.

Research Article
Copyright © The Canadian Journal of Neurological 2010


1. Andressoo, JO, Saarma, M. Signalling mechanisms underlying development and maintenance of dopamine neurons. Curr Opin Neurobiol. 2008;18(3):2976.CrossRefGoogle ScholarPubMed
2. Paulus, W, Jellinger, K. The neuropathologic basis of different clinical subgroups of Parkinson’s disease. J Neuropathol Exp Neurol. 1991;50(6):74355.CrossRefGoogle ScholarPubMed
3. Dhillon, AS, Tarbutton, GL, Levin, JL, Lowry, LK, Nalbone, JT, Shepherd, S. Pesticide/environmental exposures and Parkinson’s disease in East Texas. J Agromedicine. 2008;13(13):3748.Google Scholar
4. Poewe, W. Treatments for Parkinson disease-past achievements and current clinical needs. Neurology. 2009;72(17):6573.Google Scholar
5. Schapira, AH. The clinical relevance of levodopa toxicity in the treatment of Parkinson’s disease. Mov Disord. 2008;23(3): 51520.Google Scholar
6. Schapira, AH. Molecular and clinical pathways to neuroprotection of dopaminergic drugs in Parkinson disease. Neurology. 2009;72(17):4450.Google ScholarPubMed
7. Yrjänheikki, J, Tikka, T, Keinänen, R, Goldsteins, G, Chan, PH, Koistinaho, J. A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci. 1999;96(23): 13496500.Google Scholar
8. Zhu, S, Stavrovskaya, IG, Drozda, M, Kim, BY, Ona, V, Li, M, et al. Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature. 2002;417(8684):748.Google Scholar
9. Wang, X, Zhu, S, Drozda, M, Zhang, W, Stavrovskaya, IG, Cattaneo, E, et al. Minocycline inhibits caspase-independent and -dependent mitochondrial cell death pathways in models of Huntington’s disease. Proc Natl Acad Sci. 2003;100(18):104837.Google Scholar
10. Quintero, EM, Willis, L, Singleton, R, Harris, N, Huang, P, Bhat, N, et al. Behavioral and morphological effects of minocycline in the 6-hydroxydopamine rat model of Parkinson’s disease. Brain Res. 2006;1093(1):198207.Google Scholar
11. Ryan, ME, Ashley, RA. How do tetracyclines work? Adv Dent Res. 1998;12(2):14951.CrossRefGoogle ScholarPubMed
12. Du, Y, Ma, Z, Lin, S, Dodel, RC, Gao, F, Bales, KR, et al. Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. Proc Natl Acad Sci. 2001;98(25):1466974.Google Scholar
13. Gieseler, A, Schultze, AT, Kupsch, K, Haroon, MF, Wolf, G, Siemen, D, et al. Inhibitory modulation of the mitochondrial permeability transtion by minocycline. Biochem Pharmacol. 2009;77(5):88896.CrossRefGoogle Scholar
14. Betarbet, R, Sherer, TB, MacKenzie, G, Garcia-Osuna, M, Panov, AV, Greenamyre, JT. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci. 2000;3(12):13016.Google Scholar
15. Radad, K, Moldzio, R, Taha, M, Rausch, WD. Thymoquinone protects dopaminergic neurons against MPP(+) and rotenone. Phytother Res. 2009;23(5):696700.Google Scholar
16. Gwag, BJ, Lobner, D, Koh, JY, Wie, MB, Choi, DW. Blockade of glutamate receptors unmasks neuronal apoptosis after oxygen-glucose deprivation in vitro. Neuroscience. 1995;68(3):61519.Google Scholar
17. Kim, HS, Suh, YH. Minocycline and neurodegenerative diseases. Behav Brain Res. 2009;196(2):16879.Google Scholar
18. Thomas, M, Le, WD. Minocycline: neuroprotective mechanisms in Parkinson’s disease. Curr Pharm. 2004;10(6):67986.Google Scholar
19. Zhao, F, Cai, T, Liu, M, Zheng, G, Luo, W, Chen, J. Manganese induces dopaminergic neurodegeneration via microglial activation in a rat model of manganism. Toxicol Sci. 2009;107(1):15664.Google Scholar
20. Noble, W, Garwood, C, Stephenson, J, Kinsey, AM, Hanger, DP, Anderton, BH. Minocycline reduces the development of abnormal tau species in models of Alzheimer’s disease. FASEB J. 2009;23(3):73950.Google Scholar
21. Pattison, LR, Kotter, MR, Fraga, D, Bonelli, RM. Apoptotic cascades as possible targets for inhibiting cell death in Huntington’s disease. J Neurol. 2006;253(9):113742.Google Scholar
22. Büeler, H. Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson’s disease. Exp Neurol. 2009;218(2): 23546.Google Scholar
23. Fernandez-Gomez, FJ, Gomez-Lazaro, M, Pastor, D, Calvo, S, Aguirre, N, Galindo, MF, et al. Minocycline fails to protect cerebellar granular cell cultures against malonate-induced cell death. Neurobiol Dis. 2005;20(2):38491.Google Scholar
24. Domico, LM, Cooper, KR, Bernard, LP, Zeevalk, GD. Reactive oxygen species generation by the ethylene-bis-dithiocarbamate (EBDC) fungicide maneb and its contribution to neuronal toxicity in mesencephalic cells. Neurotoxicology. 2007;28(6):107991.Google Scholar
25. Ahmadi, FA, Linseman, DA, Grammatopoulos, TN, Jones, SM, Bouchard, RJ, Freed, CR, et al. The pesticide rotenone induces caspase-3-mediated apoptosis in ventral mesencephalic dopaminergic neurons. J Neurochem. 2003;87(4):91421.Google Scholar
26. Moon, Y, Lee, KH, Park, JH, Geum, D, Kim, K. Mitochondrial membrane depolarization and the selective death of dopaminergic neurons by rotenone: protective effect of coenzyme Q10. J Neurochem. 2005;93(5):1199208.Google Scholar
27. Filipovic, R, Zecevic, N. Neuroprotective role of minocycline in co-cultures of human fetal neurons and microglia. Exp Neurol. 2008;211(1):4151.CrossRefGoogle ScholarPubMed