Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-01T11:56:37.145Z Has data issue: false hasContentIssue false

Long Latency Reflexes in Clinical Neurology: A Systematic Review

Published online by Cambridge University Press:  08 July 2022

Debjyoti Dhar
Affiliation:
Department of Neurology, National Institute of Mental Health & Neuro Sciences (NIMHANS), Hosur Road, Bangalore 560029, Karnataka, India
Nitish Kamble
Affiliation:
Department of Neurology, National Institute of Mental Health & Neuro Sciences (NIMHANS), Hosur Road, Bangalore 560029, Karnataka, India
Pramod Kumar Pal*
Affiliation:
Department of Neurology, National Institute of Mental Health & Neuro Sciences (NIMHANS), Hosur Road, Bangalore 560029, Karnataka, India
*
Corresponding author: Dr. Pramod Kumar Pal, Professor, Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore-560029, India. Email: palpramod@hotmail.com

Abstract:

Background:

Long latency reflexes (LLRs) are impaired in a wide array of clinical conditions. We aimed to illustrate the clinical applications and recent advances of LLR in various neurological disorders from a systematic review of published literature.

Methods:

We reviewed the literature using appropriately chosen MeSH terms on the database platforms of MEDLINE, Web of Sciences, and Google Scholar for all the articles from 1st January 1975 to 2nd February 2021 using the search terms “long loop reflex”, “long latency reflex” and “C-reflex”. The included articles were analyzed and reported using synthesis without meta-analysis (SWiM) guidelines.

Results:

Based on our selection criteria, 40 articles were selected for the systematic review. The various diseases included parkinsonian syndromes (11 studies, 217 patients), Huntington’s disease (10 studies, 209 patients), myoclonus of varied etiologies (13 studies, 127 patients) including progressive myoclonic epilepsy (5 studies, 63 patients) and multiple sclerosis (6 studies, 200 patients). Patients with parkinsonian syndromes showed large amplitude LLR II response. Enlarged LLR II was also found in myoclonus of various etiologies. LLR II response was delayed or absent in Huntington’s disease. Delayed LLR II response was present in multiple sclerosis. Among the other diseases, LLR response varied according to the location of cerebellar lesions while the results were equivocal in patients with essential tremor.

Conclusions:

Abnormal LLR is observed in many neurological disorders. However, larger systematic studies are required in many neurological disorders in order to establish its role in diagnosis and management.

Résumé :

RÉSUMÉ :

Les réflexes de longue latence en neurologie clinique : résultats d’une synthèse systématique.

Contexte :

Les réflexes de longue latence (RLL) sont perturbés dans bon nombre d’états cliniques. L’étude visait à dégager, d’une synthèse systématique de la documentation médicale publiée, les applications cliniques de l’analyse des RLL dans divers troubles neurologiques et les progrès récents réalisés en la matière.

Méthode :

Il s’agit d’un examen de la documentation effectué à l’aide, tout d’abord, d’expressions MeSH bien choisies dans les bases de données MEDLINE, Web of Sciences et Google Scholar, provenant de tous les articles publiés du 1er janvier 1975 au 2 février 2021, puis des termes de recherche suivants : long loop reflex, long latency reflex et Creflex. Les articles retenus ont fait l’objet d’analyse et ensuite de déclaration selon les lignes directrices sur les synthèses sans méta-analyse (SWiM).

Résultats :

D’après les critères de sélection, 40 articles ont été retenus en vue de la synthèse systématique. Les différentes affections comprenaient les syndromes parkinsoniens (11 études; 217 patients), la chorée de Huntington (10 études; 209 patients), la myoclonie d’origine diverse (13 études; 127 patients), y compris l’épilepsie myoclonique progressive (5 études; 63 patients) et la sclérose en plaques (6 études; 200 patients). Des RLL de type II de grande amplitude ont été observés dans les syndromes parkinsoniens, de même que dans la myoclonie de différentes causes. Par contre, il y avait retard ou absence de RLL de type II dans la chorée de Huntington, et retard dans la sclérose en plaques. Parmi les autres affections, les RLL variaient selon le siège des lésions cérébelleuses, et donnaient des résultats ambigus chez les patients atteints du tremblement essentiel.

Conclusion :

Des RLL anormaux ont été observés dans divers troubles neurologiques. Toutefois, il faudrait réaliser des synthèses systématiques de plus grande taille portant sur de nombreuses affections neurologiques afin d’établir leur rôle dans le diagnostic et la prise en charge.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Canadian Neurological Sciences Federation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Liddell, EGT, Sherrington, CS. Reflexes in response to stretch (myotactic reflex). Proc R Soc Biol Sci. 1924;96:21242.Google Scholar
Denny-Brown, DE. The stretch reflex as a spinal process. J Physiol. 1927;63:144150.CrossRefGoogle ScholarPubMed
Hammond, PH. An experimental study of servo-action in human muscular control. Proc III Int Conf Med Electron. 1960, 1909.Google Scholar
Hammond, PH. The influence of prior instruction to the subject on an apparently involuntary neuro-muscular response. J Physiol. 1956;132:178.Google Scholar
Tatton, WG, Forner, SD, Gerstein, GL, Chambers, WW, Liu, CN. The effect of postcentral cortical lesions on motor responses to sudden upper limb displacements in monkeys. Brain Res. 1975;96:10813.CrossRefGoogle ScholarPubMed
Phillips, CG. The Ferrier Lecture, 1968 - Motor apparatus of the baboon’s hand. Proc R Soc London Ser B Biol Sci. 1968;173:14174, 1969.Google Scholar
Marsden, CD, Merton, PA, Morton, HB. Is the human stretch reflex cortical rather than spinal? Lancet. 1973;301:75961.CrossRefGoogle Scholar
Marsden, CD, Merton, PA, Morton, HB. Servo action in human voluntary movement. Nature. 1972;238:1403.CrossRefGoogle ScholarPubMed
Marsden, CD, Merton, PA, Morton, HB. Stretch reflex and servo action in a variety of human muscles. J Physiol. 1976;259:53160.CrossRefGoogle Scholar
Deuschl, G, Schenck, E, Lücking, CH. Long-latency responses in human thenar muscles mediated by fast conducting muscle and cutaneous afferents. Neurosci Lett. 1985;55:3616.CrossRefGoogle ScholarPubMed
Deuschl, G, Lücking, CH. Physiology and clinical applications of hand muscle reflexes. Electroencephalogr Clin Neurophysiol. 1990;41:84101.Google ScholarPubMed
Conrad, B, Aschoff, JC. Effects of voluntary isometric and isotonic activity on late transcortical reflex components in normal subjects and hemiparetic patients. Electroencephalogr Clin Neurophysiol. 1977;42:10716.CrossRefGoogle ScholarPubMed
Lefaucheur, JP, Bachoud-Levi, AC, Bourdet, C, et al. Clinical relevance of electrophysiological tests in the assessment of patients with Huntington’s disease. Mov Disord. 2002;17:1294301.CrossRefGoogle ScholarPubMed
Maguire, J, Madigan, R, Wallace, S, Draper, V, Leppanen, R. Intraoperative long-latency reflex activity in idiopathic scoliosis demonstrates abnormal central processing. A possible cause of idiopathic scoliosis. Spine. 1993;18:16216.CrossRefGoogle ScholarPubMed
Shenoy, S, Balachander, H, Sandhu, JS. Long latency reflex response of superficial trunk musculature in athletes with chronic low back pain. J Back Musculoskelet Rehabil. 2013;26:44550.Google ScholarPubMed
Diener, HC, Dichgans, J, Bootz, F, Bacher, M. Early stabilization of human posture after a sudden disturbance: influence of rate and amplitude of displacement. Exp Brain Res. 1984;56:12634.CrossRefGoogle ScholarPubMed
Dellepiane, M, Medicina, MC, Mora, R, Salami, A. Static and dynamic posturography in patients with asymptomatic HIV-1 infection and AIDS. Acta Otorhinolaryngol Ital. 2005;25:3538.Google ScholarPubMed
Tatton, WG, Lee, RG. Evidence for abnormal long-loop reflexes in rigid Parkinsonian patients. Brain Res. 1975;100:6716.CrossRefGoogle ScholarPubMed
Deuschl, G, Eisen, A. Long-latency reflexes following electrical nerve stimulation. Guidelines of the International Federation of Clinical Neurophysiology. EEG Suppl. 1999;52:2638.Google Scholar
Jenner, JR, Stephens, JA. Cutaneous reflex responses and their central nervous pathways studied in man. J Physiol. 1982;333:40519.CrossRefGoogle ScholarPubMed
Whiting, PF, Weswood, ME, Rutjes, AWS, Reitsma, JB, Bossuyt, PNM, Kleijnen, J. Evaluation of QUADAS, a tool for the quality assessment of diagnostic accuracy studies. BMC Med Res Methodol. 2006;6:25.CrossRefGoogle ScholarPubMed
Campbell, M, McKenzie, JE, Sowden, A, et al. Synthesis without meta-analysis (SWiM) in systematic reviews: reporting guideline. BMJ. 2020;368:16.Google ScholarPubMed
Hunter, JP, Ashby, P, Lang, AE. Afferents contributing to the exaggerated long latency reflex response to electrical stimulation in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1988;51:140510.CrossRefGoogle Scholar
Rothwell, JC, Obeso, JA, Traub, MM, Marsden, CD. The behaviour of the long-latency stretch reflex in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1983;46:3544.CrossRefGoogle ScholarPubMed
Mortimer, JA, Webster, DD. Evidence for a quantitative association between EMG stretch responses and Parkinsonian rigidity. Brain Res. 1979;162:16973.CrossRefGoogle ScholarPubMed
Berardelli, A, Sabra, AF, Hallett, M. Physiological mechanisms of rigidity in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1983;46:4553.CrossRefGoogle ScholarPubMed
Cody, FWJ, Macdermott, N, Matthews, PBC, Richardson, HC. Observations on the genesis of the stretch reflex in Parkinson’s disease. Brain. 1986;109:22949.CrossRefGoogle ScholarPubMed
Scholz, E, Diener, HC, Noth, J, Friedemann, H, Dichgans, J, Bacher, M. Medium and long latency EMG responses in leg muscles: Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1987;50:6670.CrossRefGoogle ScholarPubMed
Bloem, BR, Beckley, DJ, van Dijk, JG, Zwinderman, AH, Roos, RA. Are medium and long latency reflexes a screening tool for early Parkinson ’ s disease ? J Neurol Sci. 1992;3:3842.CrossRefGoogle Scholar
Noth, J, Schürmann, M, Podoll, K, Schwarz, M. Reconsideration of the concept of enhanced static fusimotor drive in rigidity in patients with Parkinson’s disease. Neurosci Lett. 1988;84:23943.CrossRefGoogle ScholarPubMed
Fuhr, P, Zeffiro, T, Hallett, M. Cutaneous reflexes in Parkinson;s disease. Muscle Nerve. 1992;15:7339.CrossRefGoogle ScholarPubMed
Wszolek, ZK, Lagerlund, TD, Steg, RE, McManis, PG. Clinical neurophysiologic findings in patients with rapidly progressive familial Parkinsonism and dementia with pallido-ponto-nigral degeneration. Electroencephalogr Clin Neurophysiol. 1998;107:21322.CrossRefGoogle ScholarPubMed
Shibasaki, H. Neurophysiological classification of myoclonus. Neurophysiol Clin. 2006;36:2679.CrossRefGoogle ScholarPubMed
Kojovic, M, Cordivari, C, Bhatia, K. Myoclonic disorders: a practical approach for diagnosis and treatment. Ther Adv Neurol Disord. 2011;4:4762.CrossRefGoogle ScholarPubMed
Tassinari, CA, Rubboli, G, Shibasaki, H. Neurophysiology of positive and negative myoclonus. Electroencephalogr Clin Neurophysiol. 1998;107:18195.CrossRefGoogle ScholarPubMed
Cruccu, G, Deuschl, G. The clinical use of brainstem reflexes and hand-muscle reflexes. Clin Neurophysiol. 2000;111:37187.CrossRefGoogle ScholarPubMed
Sutton, GG, Mayer, RF. Focal reflex myoclonus. J Neurol Neurosurg Psychiatry. 1974;37:20717.CrossRefGoogle ScholarPubMed
Monza, D, Ciano, C, Scaioli, V, et al. Neurophysiological features in relation to clinical signs in clinically diagnosed corticobasal degeneration. Neurol Sci. 2003;24:1623.CrossRefGoogle ScholarPubMed
Carella, F, Ciano, C, Panzica, F, Scaioli, V. Myoclonus in corticobasal degeneration. Mov Disord. 1997;12:598603.CrossRefGoogle ScholarPubMed
Okuma, Y, Fujishima, K, Miwa, H, Mori, H, Mizuno, Y. Myoclonic tremulous movements in multiple system atrophy are a form of cortical myoclonus. Mov Disord. 2005;20:4516.CrossRefGoogle ScholarPubMed
Caviness, JN, Adler, CH, Newman, S, Caselli, RJ, Muenter, MD. Cortical myoclonus in levodopa-responsive Parkinsonism. Mov Disord. 1998;13:5404.CrossRefGoogle ScholarPubMed
Hughes, AJ, Lees, AJ, Daniel, SE, Blankson, S. A clinicopathologic study of 100 cases of Parkinson’s disease. Arch Neurol. 1993;50:1408.CrossRefGoogle ScholarPubMed
Glass, GA, Ahlskog, JE, Matsumoto, JY. Orthostatic myoclonus: a contributor to gait decline in selected elderly. Neurology. 2007;68:182630.CrossRefGoogle ScholarPubMed
Gunduz, A, Tutuncu, M, Zeydan, B, et al. Electrophysiological investigations in orthostatic myoclonus : preliminary findings. Can J Neurol Sci. 2017;45:14.Google ScholarPubMed
Guerrini, R, Bonanni, P, Parmeggiani, L, Santucci, M. Cortical reflex myoclonus in rett syndrome 1998;, 4729.CrossRefGoogle Scholar
Li, JY, Cunic, DI, Paradiso, G, et al. Electrophysiological features of myoclonus-dystonia. Mov Disord. 2008;23:205561.CrossRefGoogle ScholarPubMed
Marelli, C, Canafoglia, L, Zibordi, F, et al. A neurophysiological study of myoclonus in patients with DYT11 myoclonus-dystonia syndrome. Mov Disord. 2008;23:20418.Google ScholarPubMed
Canafoglia, L, Ciano, C, Panzica, F, et al. Sensorimotor cortex excitability in Unverricht-Lundborg disease and Lafora body disease. Neurology. 2004;63:230915.CrossRefGoogle ScholarPubMed
Visani, E, Canafoglia, L, Sebastiano, DR, et al. Clinical neurophysiology giant SEPs and SEP-recovery function in Unverricht – Lundborg disease. Clin Neurophysiol. 2013;124:10138.CrossRefGoogle ScholarPubMed
Canafoglia, L, Franceschetti, S, Uziel, G, et al. Characterization of severe action myoclonus in sialidoses. Epilepsy Res. 2011;94:8693.CrossRefGoogle ScholarPubMed
Demura, A, Demura, Y, Ota, M, Kondo, T, Kinoshita, M. Clinical significance of the long-loop reflex and giant evoked potentials in genetically proven benign adult familial myoclonic epilepsy. Clin Neurophysiol. 2020;131:97880.CrossRefGoogle ScholarPubMed
Manabe, Y, Narai, H, Warita, H, et al. Benign adult familial myoclonic epilepsy (BAFME) with night blindness. Seizure. 2002;11:2668.CrossRefGoogle ScholarPubMed
Noth, J, Friedemann, H-H, Podoll, K, Lange, HW. Absence of long latency reflexes to imposed finger displacements in patients with Huntington’s disease. Neurosci Lett. 1983;35:97100.CrossRefGoogle ScholarPubMed
Thompson, PD, Berardelli, A, Rothwell, JC, et al. The coexistence of bradykinesia and chorea in Huntington’s disease and its implications for theories of basal. Brain. 1988;111:22344.CrossRefGoogle ScholarPubMed
Noth, J, Podoll, K, Friedemann, H. Long-loop reflexes in small hand muscles studied in normal subjects and in patients with Huntington’s disease. Brain. 1985;108:6580.CrossRefGoogle ScholarPubMed
Eisen, A, Bohlega, S, Hayden, M. Silent periods, long-latency reflexes and cortical MEPs in Huntington’s disease arid at-risk relatives. Electroencephalogr Clin Neurophysiol. 1989;9:4449.Google Scholar
Deuschl, G, Lucking, CH, Schenck, E. Hand muscle reflexes following electrical stimulation in choreatic movement disorders. J Neurol Neurosurg Psychiatry. 1989;52:75562.CrossRefGoogle ScholarPubMed
Lefaucheur, JP, Menard-Lefaucheur, I, Maison, P, et al. Electrophysiological deterioration over time in patients with Huntington’s disease. Mov Disord. 2006;21:13504.CrossRefGoogle ScholarPubMed
Rossi Sebastiano, D, Soliveri, P, Panzica, F, et al. Cortical myoclonus in childhood and juvenile onset Huntington’s disease. Park Relat Disord. 2012;18:7947.CrossRefGoogle ScholarPubMed
Huttunen, J, Homberg, V. EMG responses in leg muscles to postural perturbations in Huntington’s disease. J Neurol Neurosurg Psychiatry. 1990;53:5562.CrossRefGoogle ScholarPubMed
Deuschl, G, Lvjcking, CH, Schenckt, E. Essential tremor: electrophysiological and pharmacological evidence for a subdivision. J Neurol Neurosurg Psychiatry. 1987;50:143541.CrossRefGoogle ScholarPubMed
Elble, RJ, Higgins, C, Moody, CJ. Stretch reflex oscillations and essential tremor. J Neurol Neurosurg Psychiatry. 1987;50:6918.CrossRefGoogle ScholarPubMed
Markand, ON. Familial startle disease (hyperexplexia). Arch Neurol. 1984;41:71.CrossRefGoogle ScholarPubMed
Brown, P, Rothwell, JC, Thompson, PD, Britton, TC, Day, BL, Marsden, CD. The hyperekplexias and their relationship to the normal startle reflex. Brain. 1991;114:190328.CrossRefGoogle Scholar
Luiz, J, Gherpelli, D, Reis, A, et al. Hyperekplexia, a cause of neonatal apnea: a case report. Brain Dev. 1995;17:1146.Google Scholar
Köster, B, Lauk, M, Timmer, J, et al. Central mechanisms in human enhanced physiological tremor. Neurosci Lett. 1998;241:1358.CrossRefGoogle ScholarPubMed
Matthews, PB, Farmer, SF, Ingramt, DA. On the localization of the stretch reflex of intrinc muscles in a patient with mirror movements. Physiology. 1990;428:56177.Google Scholar
Srinivasulu, B, Lakshmi, PV, Borgohain, R. Electrophysiological study of Writer’s cramp 2018;, 17(2):17.Google Scholar
Lee, YC, Chen, JT, Liao, KK, Wu, ZA, Soong, BW. Prolonged cortical relay time of long latency reflex and central motor conduction in patients with spinocerebellar ataxia type 6. Clin Neurophysiol. 2003;114:45862.CrossRefGoogle ScholarPubMed
Naumann, M, Reiners, K. Long-latency reflexes of hand muscles in idiopathic focal dystonia and their modification by botulinum toxin. Brain. 1997;120:40916.CrossRefGoogle ScholarPubMed
Striano, P, Manganelli, F, Boccella, P, Perretti, A, Striano, S. Levetiracetam in patients with cortical myoclonus: a clinical and electrophysiological study 2005, 20(12):16104.CrossRefGoogle Scholar
Dueschl, G, Strahl, K, Schenck, E, Lücking, CH. The diagnostic significance of long-latency reflexes in multiple sclerosis. Electroencephalogr Clin Neurophysiol. 1988;70:5661.CrossRefGoogle Scholar
Bonfiglio, L, Rossi, B, Sartucci, F. Prolonged intracortical delay of long-latency reflexes: electrophysiological evidence for a cortical dysfunction in multiple sclerosis 2006;, 69:60613.CrossRefGoogle Scholar
Iovichich, A. Long latency reflexes and somatosensory potentials in multiple sclerosis patients 1994;, 24(5):212.CrossRefGoogle Scholar
Michels, R, Wessel, K. Long-latency reflexes, somatosensory evoked potentials and transcranial magnetic stimulation: relation of the three methods in multiple sclerosis 1993;, 89:23541.CrossRefGoogle Scholar
Matsumoto, H, Kaneshige, Y. Correlation of somatosensory evoked potentials and long loop reflexes in patients with multiple sclerosis. J Neurol Sci. 1990;95:33543.CrossRefGoogle ScholarPubMed
Toydemİr, HE, Gökyİğİt, M, Seleker, FK, Çelebİ, LG. Long-latency reflexes and area measurements of corpus callosum in patients with multiple sclerosis. Bezmialem Sci. 2016 511.CrossRefGoogle Scholar
Friedemann, H H, Noth, J, Diener, H C, Bacher, M. Long latency EMG responses in hand and leg muscles: cerebellar disorders. J Neurol Neurosurg Psychiatry. 1987;50:717.CrossRefGoogle ScholarPubMed
Diener, HC, Dichgans, J, Bacher, M, Guschlbauer, B. Characteristic alterations of long-loop “reflexes” in patients with Friedreich’s disease and late atrophy of the cerebellar anterior lobe. J Neurol Neurosurg Psychiatry. 1984;47:67985.CrossRefGoogle ScholarPubMed
Chandra, SR, Isaac, TG, Mane, M, Bharath, S, Nagaraju, BC. Long loop reflex 2 in patients with cortical dementias: a pilot study. Indian J Psychol Med. 2017;39:1648.CrossRefGoogle ScholarPubMed
Stetkarova, I, Stejskal, L, Kofler, M. Tumors localized near the central sulcus may cause increased somatosensory evoked potentials. Clin Neurophysiol. 2006;117:135966.CrossRefGoogle ScholarPubMed
Gündüz, A, Kiziltan, ME, Coşkun, T, Delil, Ş, Yeni, N, Özkara, Ç. Electrophysiological findings in Rasmussen’s syndrome. Epileptic Disord. 2016;18:736.CrossRefGoogle ScholarPubMed
Liao, K, Chen, J, Lin, K, Chen, C, Kao, K, Wu, Z. Brain dysfunction explored by long latency reflex: a study of adrenomyeloneuropathy. Acta Neurol Scand. 2001;104:1059.CrossRefGoogle ScholarPubMed
Shields, RK, Petrie, M, Ba, SC, et al. Myotonic dystrophy type 1 alters muscle twitch properties, spinal reflexes, and perturbation-induced trans-cortical reflexes. Muscle Nerve. 2020;61:20512.CrossRefGoogle ScholarPubMed
Faig, J, Busse, O. Silent period evoked by transcranial magnetic stimulation in unilateral thalamic infarcts. J Neurol Sci. 1996;142:8592.CrossRefGoogle ScholarPubMed
Groenewegen, JS, de Groot, JH, Schouten, AC, Maier, AB, Arendzen, JH, Meskers, CGM. Spinal reflex properties in the long term after stroke. J Electromyogr Kinesiol. 2012;22:23442.CrossRefGoogle Scholar
Trumbower, RD, Finley, JM, Shemmell, JB, Honeycutt, CF, Perreault, EJ. Bilateral impairments in task-dependent modulation of the long-latency stretch reflex following stroke 2013;, 124(7):137380.CrossRefGoogle Scholar
Banks, CL, Little, VL, Walker, ER, Patten, C. Lower extremity long-latency reflexes differentiate walking function after stroke. Exp Brain Res. 2019;237:2595605.CrossRefGoogle ScholarPubMed
Bartel, P, Lotz, B, Delpori, R, Ubbink, J, Becker, P. Electrophysiological indices of central and peripheral nervous system function during theophylline therapy. Neuropsychobiology. 1989;21:1048.CrossRefGoogle ScholarPubMed
Mashhadi Malek, M, Towhidkhah, F, Gharibzadeh, S, Daeichin, V, Ali Ahmadi-Pajouh, M. Are rigidity and tremor two sides of the same coin in Parkinson’s disease? Comput Biol Med. 2008;38:11339.Google ScholarPubMed
Oepen, G, Doerr, M, Thoden, U. Visual (VEP) and somatosensory (SSEP) evoked potentials in Huntington’s chorea. Electroencephalogr Clin Neurophysiol. 1981;51:66670.CrossRefGoogle ScholarPubMed
Noth, J, Engel, L, Friedemann, HH, Lange, HW. Evoked potentials in patients with Huntington’s disease and their offspring. I. Somatosensory evoked potentials. Electroencephalogr Clin Neurophysiol Evoked Potentials Section. 1984;59:13441.Google ScholarPubMed
Wiesendanger, M, Miles, TS. Ascending pathway of low-threshold muscle afferents to the cerebral cortex and its possible role in motor control. Physiol Rev. 1982;62:123470.CrossRefGoogle Scholar
Marsden, CD, Rothwell, JC, Day, BL. Long-latency automatic responses to muscle stretch in man: origin and function. Adv Neurol. 1983;39:50939.Google ScholarPubMed
Töpper, R, Schwarz, M, Lange, HW, Hefter, H, Noth, J. Neurophysiological abnormalities in the Westphal variant of Huntington’s disease. Mov Disord. 1998;13:9208.CrossRefGoogle ScholarPubMed
Park, H, Kim, H. Electrophysiologic assessments of involuntary movements: tremor and myoclonus. J Mov Disord. 2009;2:147.Google ScholarPubMed
Balestra, C, Levenez, M, Lafere, P, Dachy, B, Ezquer, M, Germonpre, P. Respiratory rate can be modulated by long-loop muscular reflexes, a possible factor in involuntary cessation of apnea. Diving Hyperb Med. 2014;1:38.Google Scholar
Oostveen, CN, Weerwind, PW, Bergs, PPE, et al. Neurophysiological and paraspinal oximetry monitoring to detect spinal cord ischemia in patients during and after descending aortic repair: an international multicenter explorative study. Contemp Clin Trials Commun. 2020;17:100545.CrossRefGoogle ScholarPubMed