Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T23:08:25.723Z Has data issue: false hasContentIssue false

Levodopa Reduces Muscle Tone and Lower Extremity Tremor in Parkinson’s Disease

Published online by Cambridge University Press:  18 September 2015

Anne Burleigh
Affiliation:
Department of Physiology, Oregon Health Sciences University, Portland, Oregon
Fay Horak
Affiliation:
R.S. Dow Neurological Sciences Institute of GSH & MC; Department of Physiology, Oregon Health Sciences University, Portland, Oregon Department of Neurology, Oregon Health Sciences University, Portland, Oregon
John Nutt
Affiliation:
Department of Neurology, Oregon Health Sciences University, Portland, Oregon
James Frank
Affiliation:
Department of Kinesiology, University of Waterloo, Waterloo, Ontario
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Objective

We have quantified the effects of levodopa treatment in Parkinsonian subjects during maintained stance.

Methods

Electromyographic muscle activity during quiet stance was assessed in subjects with Parkinson’s disease, who exhibited a fluctuating response to levodopa, and in age-matched control subjects. Stance stability was also assessed from mean displacement and velocity of the center of pressure excursions during stance.

Results

Lower extremity and trunk muscles showed high amplitude activity in all Parkinson’s subjects when “off”, and a 4–5 Hz tremor in three of these subjects. When “on”, the amplitude of muscle activity was reduced in the distal muscles more than the proximal, while tremor was suppressed in all muscles. Corresponding to the excessive muscle activity, the Parkinson’s subjects had increased velocity and variability of velocity in the anterior-posterior center of foot pressure excursions, but the mean displacement of the center of pressure excursion was not different from the controls. The velocity of center of pressure excursions in the Parkinson’s subjects “on”, approached those of the control subjects suggesting that the excessive distal muscle amplitude and tremor contributed to the high velocity of the center of pressure.

Conclusions

These findings suggest that dopaminergic systems are involved in the regulation of muscle tone during stance. Depletion of dopaminergic transmission results in increased muscle tone and tremor in the lower extremities which may contribute to changes in posture and stability.

Résumé

Résumé<span class='italic'><span class='bold'>Objectif</span></span>

Nous avons quantifié les effets du traitement par la L-dopa chez des parkinsoniens en position debout.

<span class='italic'><span class='bold'>Méthodes</span></span>

Nous avons évalué l’activité musculaire par electromyographic chez des parkinsoniens en position debout stable qui présentaient des fluctuations dans la réponse à la L-dopa et chez des sujets contrôles appariés pour l’âge. La stabilité de la posture était également évaluée par le déplacement moyen et la vélocité des oscillations du centre de pression pendant la station debout.

<span class='italic'><span class='bold'>Résultats</span></span>

Les muscles des membres inférieurs et du tronc présentaient une activité de haute amplitude chez tous les parkinsoniens quand ils n’étaient pas sous l’effet de la L-dopa et un tremblement de 4–5 Hz chez trois de ces sujets. Quand ils étaient sous l’effet du médicament, l’amplitude de l’activité musculaire était diminuée de façon plus marquée dans les muscles distaux que proximaux, alors que le tremblement était supprimé dans tous les muscles. Les parkinsoniens présentaient un accroissement de la vélocité et de la variabilité de la vélocité des oscillations antéro-postérieures du centre de pression du pied correspondant à l’activité musculaire excessive, mais le déplacement moyen du centre de pression n’était pas différent de celui des contrôles. La vélocité des oscillations du centre de pression chez les parkinsoniens en période d’effet de la L-dopa était presque identique à celle des contrôles, suggérant que l’amplitude excessive des muscles distaux et le tremblement contribuaient à la haute vélocité du centre de pression.

<span class='italic'><span class='bold'>Conclusions</span></span>

Ces observations suggèrent que les systèmes dopaminergiques sont impliqués dans la régulation du tonus musculaire pendant la station debout. L’épuisement de la transmission dopaminergique mène à l’augmentation du tonus musculaire et au tremblement des membres inférieurs, ce qui peut contribuer aux changements dans la posture et la stabilité.

Type
Original Articles
Copyright
Copyright © Canadian Neurological Sciences Federation 1995

References

REFERENCES

1. Marsden, CD. Defects of movement in Parkinson’s disease. In: Delwaide, PJ, Agnoli, A, eds. Clinical Neurophysiology in Parkinsonism. Elsevier Science Pub. (Biomed Division) 1985; 107115.Google Scholar
2. Weinrich, M, Koch, K, Fernando-Garcia, AB, Angel, RW. Axial versus distal motor impairment in Parkinson’s disease. Neurology 1988; 38: 540545.Google Scholar
3. Klawans, HL. Individual manifestations of Parkinson’s disease after 10 or more years of levadopa. Mov Disord 1986; 1: 187192.Google Scholar
4. Riley, PO, Benda, BJ, Gill-Body, KM, Krebs, DE. Phase plane analysis of stability in quiet standing. J Rehab Res Develop 1995; (in press).Google ScholarPubMed
5. Hlavacka, F, Saling, M. Compensation effect of visual feedback in upright posture control. Activ. Nerv. Sup. 1986; 28(3): 191196.Google Scholar
6. Horak, FB, Frank, J. Three separate postural systems affected in Parkinsonism. In: Stuart, DG, Gurfinkel, VS, Weisendanger, M, eds. Motor Control VII: Proceedings of the Vllth Symposium on Motor Control. Tuscon: Motor Control Press, 1995.Google Scholar
7. Hallett, M. Physiology of basal ganglia disorders: an overview. Can J Neurol Sci 1993; 20: 177183.CrossRefGoogle ScholarPubMed
8. Klockgether, T, Turski, L, Honore’, T, et al. The AMPA receptor antagonist NBQX has antiparkinsonian effects on monoamine depleted rats and MPTP-treated monkeys. Ann Neurol 1991; 30: 717723.Google Scholar
9. Double, KL, Crocker, AD. Quantitative electromyographic changes following modification of central dopaminergic transmission. Brain Res 1993; 604: 342344.Google Scholar
10. Garcia-Rill, E. The basal ganglia and the locomotor region. Brain Res Rev 1986; 11:4763.Google Scholar
11. Mori, S. Contribution of postural muscle tone to full expression of posture and locomotor movements: multi-faceted analyses of its setting brainstem-spinal cord mechanisms in the cat. Jap J Physiol 1989; 38: 785809.Google Scholar
12. Burleigh, AL, Horak, FB, Burchiel, KJ, Nutt, JG. Effects of thalamic stimulation on tremor, balance, and step-initiation: a single subject study. Mov Disord 1993; 8(4): 519524.CrossRefGoogle ScholarPubMed
13. Kim, JS, Lee, MC. Leg tremor mimicking orthostatic tremor as an initial manifestation of Parkinson’s disease [letter]. Mov Disord 1993; 8(3): 397398.Google Scholar
14. Thompson, PD, Rothwell, JC, Day, BL, et al. The physiology of orthostatic tremor. Arch Neurol 1986; 43: 584587.Google Scholar
15. Obeso, JA, Quesada, P, Artieda, J, Martinez-Lage, JM. In: Delwaide, PJ, Agnoli, A, eds. Clinical Neurophysiology in Parkinsonism. Elsevier Science Pub. (Biomed Division) 1985; 918.Google Scholar
16. Lelli, S, Panizza, M, Hallett, M. Spinal cord inhibitory mechanisms in Parkinson’s disease. Neurology 1991; 41: 553556.CrossRefGoogle ScholarPubMed