Skip to main content Accessibility help
×
Home
Hostname: page-component-888d5979f-ts5rl Total loading time: 0.757 Render date: 2021-10-28T03:30:26.932Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Febrile Seizures: Current Views and Investigations

Published online by Cambridge University Press:  02 December 2014

Aylin Y. Reid
Affiliation:
Epilepsy & Brain Circuits Program and Hotchkiss Brain Institute, Departments of Neuroscience, University of Calgary, Calgary, Alberta, Canada Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada
Michael A. Galic
Affiliation:
Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada
G. Campbell Teskey
Affiliation:
Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
Quentin J. Pittman
Affiliation:
Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Febrile seizures (FSs) are seizures that occur during fever, usually at the time of a cold or flu, and represent the most common cause of seizures in the pediatric population. Up to 5% of children between the ages of six months and five years-of-age will experience a FS. Clinically these seizures are categorized as benign events with little impact on the growth and development of the child. However, studies have linked the occurrence of FSs to an increased risk of developing adult epileptic disorders. There are many unanswered questions about FSs, such as the mechanism of their generation, the long-term effects of these seizures, and their role in epileptogenesis. Answers are beginning to emerge based on results from animal studies. This review summarizes the current literature on animal models of FSs, mechanisms underlying the seizures, and functional, structural, and molecular changes that may result from them.

Type
Other
Copyright
Copyright © The Canadian Journal of Neurological 2009

References

1.Berg, AT, Shinnar, S, Hauser, WA, Alemany, M, Shapiro, ED, Salomon, ME, et al.A prospective study of recurrent febrile seizures. N Engl J Med. 1992; 327:11227.CrossRefGoogle ScholarPubMed
2.Verity, CM, Golding, J.Risk of epilepsy after febrile convulsions: a national cohort study. BMJ. 1991; 303:13736.CrossRefGoogle ScholarPubMed
3.Hauser, WA.The prevalence and incidence of convulsive disorders in children. Epilepsia. 1994; 35 Suppl 2:S16.CrossRefGoogle ScholarPubMed
4.Nelson, KB, Ellenberg, JH.Prognosis in children with febrile seizures. Pediatrics. 1978; 61:7207.Google ScholarPubMed
5.Annegers, JF, Hauser, WA, Shirts, SB, Kurland, LT.Factors prognostic of unprovoked seizures after febrile convulsions. N Engl J Med. 1987; 316:4938.CrossRefGoogle ScholarPubMed
6.Frantzen, E, Lennox-Buchthal, M, Nygaard, A.Longitudinal EEG and clinical study of children with febrile convulsions. Electroencephalogr Clin Neurophysiol. 1968; 24:197212.CrossRefGoogle ScholarPubMed
7.Falconer, MA, Taylor, DC.Surgical treatment of drug-resistant epilepsy due to mesial temporal sclerosis. Etiology and significance. Arch Neurol. 1968; 19:3531.CrossRefGoogle ScholarPubMed
8.Lewis, DV.Febrile convulsions and mesial temporal sclerosis. Curr Opin Neurol. 1999; 12:197201.CrossRefGoogle ScholarPubMed
9.Avishai-Eliner, S, Brunson, KL, Sandman, CA, Baram, TZ.Stressed-out, or in (utero)? Trends Neurosci. 2002; 25:51824.CrossRefGoogle ScholarPubMed
10.Verity, CM, Greenwood, R, Golding, J.Long-term intellectual and behavioral outcomes of children with febrile convulsions. N Engl J Med. 1998; 338:17238.CrossRefGoogle ScholarPubMed
11.Chang, YC, Guo, NW, Wang, ST, Huang, CC, Tsai, JJ.Working memory of school-aged children with a history of febrile convulsions: a population study. Neurology. 2001; 57:3742.CrossRefGoogle ScholarPubMed
12.Baram, TZ, Gerth, A, Schultz, L.Febrile seizures: an appropriate-aged model suitable for long-term studies. Brain Res Dev Brain Res. 1997; 98:26570.CrossRefGoogle ScholarPubMed
13.Holtzman, D, Obana, K, Olson, J.Hyperthermia-induced seizures in the rat pup: a model for febrile convulsions in children. Science. 1981; 213:10346.CrossRefGoogle Scholar
14.Lennox, MA, Sibley, WA, Zimmerman, HM.Fever and febrile convulsions in kittens: a clinical, electroencephalographic, and histopathologic study. J Pediatr. 1954; 45:17990.CrossRefGoogle ScholarPubMed
15.Baram, TZ, Shinnar, S.Febrile seizures. Elsevier. San Diego: Academic Press; 2002.Google Scholar
16.Hjeresen, DL, Diaz, J.Ontogeny of susceptibility to experimental febrile seizures in rats. Dev Psychobiol. 1988; 21:26175.CrossRefGoogle ScholarPubMed
17.Jiang, W, Duong, TM, de Lanerolle, NC.The neuropathology of hyperthermic seizures in the rat. Epilepsia. 1999; 40:519.CrossRefGoogle ScholarPubMed
18.Berg, AT.Are febrile seizures provoked by a rapid rise in temperature? Am J Dis Child. 1993; 147:11013.Google ScholarPubMed
19.Ostberg, JR, Taylor, SL, Baumann, H, Repasky, EA.Regulatory effects of fever-range whole-body hyperthermia on the LPS-induced acute inflammatory response. J Leukoc Biol. 2000; 68:81520.Google ScholarPubMed
20.Elmquist, JK, Scammell, TE, Saper, CB.Mechanisms of CNS response to systemic immune challenge: the febrile response. Trends Neurosci. 1997; 20:56570.CrossRefGoogle ScholarPubMed
21.Saper, CB.Neurobiological basis of fever. Ann N Y Acad Sci. 1998; 856:904.CrossRefGoogle ScholarPubMed
22.van Dam, AM, Poole, S, Schultzberg, M, Zavala, F, Tilders, FJ.Effects of peripheral administration of LPS on the expression of immunoreactive interleukin-1 alpha, beta, and receptor antagonist in rat brain. Ann N Y Acad Sci. 1998; 840:12838.CrossRefGoogle Scholar
23.Roth, J, Rummel, C, Barth, SW, Gerstberger, R, Hübschle, T.Molecular aspects of fever and hyperthermia. Neurol Clin. 2006; 24:42139.CrossRefGoogle ScholarPubMed
24.Dubé, CM, Brewster, AL, Baram, TZ.Febrile seizures: mechanisms and relationship to epilepsy. Brain Dev. 2009; 31:36671.CrossRefGoogle Scholar
25.Heida, JG, Boissé, L, Pittman, QJ.Lipopolysaccharide-induced febrile convulsions in the rat: short-term sequelae. Epilepsia. 2004; 45:131729.CrossRefGoogle ScholarPubMed
26.Heida, JG, Teskey, GC, Pittman, QJ.Febrile convulsions induced by the combination of lipopolysaccharide and low-dose kainic acid enhance seizure susceptibility, not epileptogenesis, in rats. Epilepsia. 2005; 46:1898905.CrossRefGoogle Scholar
27.Heida, JG, Pittman, QJ.Causal links between brain cytokines and experimental febrile convulsions in the rat. Epilepsia. 2005; 46:190613.CrossRefGoogle ScholarPubMed
28.Dubé, C, Chen, K, Eghbal-Ahmadi, M, Brunson, K, Soltesz, I, Baram, TZ.Prolonged febrile seizures in the immature rat model enhance hippocampal excitability long term. Ann Neurol. 2000; 47:33644.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
29.Dubé, C, Richichi, C, Bender, RA, Chung, G, Litt, B, Baram, TZ.Temporal lobe epilepsy after experimental prolonged febrile seizures: prospective analysis. Brain. 2006; 129:91122.CrossRefGoogle ScholarPubMed
30.McCaughran, JA, Schechter, N.Experimental febrile convulsions: long-term effects of hyperthermia-induced convulsions in the developing rat. Epilepsia. 1982; 23:17383.CrossRefGoogle ScholarPubMed
31.El Radhi, AS, Withana, K, Banajeh, S.Recurrence rate of febrile convulsion related to the degree of pyrexia during the first attack. Clin Pediatr (Phila). 1986; 25:3113.CrossRefGoogle ScholarPubMed
32.El Radhi, AS.Lower degree of fever at the initial febrile convulsion is associated with increased risk of subsequent convulsions. Eur J Paediatr Neurol. 1998; 2:916.CrossRefGoogle Scholar
33.Gordon, KE, Dooley, JM, Wood, EP, Bethune, P.Is temperature regulation different in children susceptible to febrile seizures? Can J Neurol Sci. 2009; 36:1925.Google ScholarPubMed
34.Tsuboi, T.Epidemiology of febrile and afebrile convulsions in children in Japan. Neurology. 1984; 34:17581.CrossRefGoogle ScholarPubMed
35.al-Eissa, YA.Febrile seizures: rate and risk factors of recurrence. J Child Neurol. 1995; 10:3159.CrossRefGoogle ScholarPubMed
36.Armstrong, LE, Casa, DJ, Millard-Stafford, M, Moran, DS, Pyne, SW, Roberts, WO.American College of Sports Medicine position stand. Exertional heat illness during training and competition. Med Sci Sports Exerc. 2007; 39:55672.CrossRefGoogle ScholarPubMed
37.Qu, L, Liu, X, Wu, C, Leung, LS.Hyperthermia decreases GABAergic synaptic transmission in hippocampal neurons of immature rats. Neurobiol Dis. 2007; 27:3207.CrossRefGoogle Scholar
38.Qu, L, Leung, LS.Mechanisms of hyperthermia-induced depression of GABAergic synaptic transmission in the immature rat hippocampus. J Neurochem. 2008; 106:215869.CrossRefGoogle ScholarPubMed
39.Dubé, C, Brunson, KL, Eghbal-Ahmadi, M, Gonzalez-Vega, R, Baram, TZ.Endogenous neuropeptide Y prevents recurrence of experimental febrile seizures by increasing seizure threshold. J Mol Neurosci. 2005; 25:27584.CrossRefGoogle ScholarPubMed
40.Pittman, QJ, Naylor, A, Poulin, P, Disturnal, J, Veale, WL, Martin, SM, et al.The role of vasopressin as an antipyretic in the ventral septal area and its possible involvement in convulsive disorders. Brain Res Bull. 1988: 20:88792.CrossRefGoogle ScholarPubMed
41.Allan, SM, Parker, LC, Collins, B, Davies, R, Luheshi, GN, Rothwell, NJ.Cortical cell death induced by IL-1 is mediated via actions in the hypothalamus of the rat. Proc Natl Acad Sci USA. 2000; 97:55805.CrossRefGoogle Scholar
42.Allan, SM, Rothwell, NJ.Cytokines and acute neurodegeneration. Nat Rev Neurosci. 2001; 2:73444.CrossRefGoogle Scholar
43.De Simoni, MG, Perego, C, Ravizza, T, Moneta, D, Conti, M, Marchesi, F, et al.Inflammatory cytokines and related genes are induced in the rat hippocampus by limbic status epilepticus. Eur J Neurosci. 2000; 12:262333.CrossRefGoogle Scholar
44.Eriksson, C, Tehranian, R, Iverfeldt, K, Winblad, B, Schultzberg, M.Increased expression of mRNA encoding interleukin-1beta and caspase-1, and the secreted isoform of interleukin-1 receptor antagonist in the rat brain following systemic kainic acid administration. J Neurosci Res. 2000; 60:26679.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
45.Jankowsky, JL, Patterson, PH.The role of cytokines and growth factors in seizures and their sequelae. Prog Neurobiol. 2001; 63:12549.CrossRefGoogle ScholarPubMed
46.Lehtimaki, KA, Peltola, J, Koskikallio, E, Keranen, T, Honkaniemi, J.Expression of cytokines and cytokine receptors in the rat brain after kainic acid-induced seizures. Brain Res Mol Brain Res. 2003; 110:25360.CrossRefGoogle ScholarPubMed
47.Ichiyama, T, Nishikawa, M, Yoshitomi, T, Hayashi, T, Furukawa, S.Tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6 in cerebrospinal fluid from children with prolonged febrile seizures. Comparison with acute encephalitis/encephalopathy. Neurology. 1998; 50:40711.CrossRefGoogle ScholarPubMed
48.Lynch, AM, Walsh, C, Delaney, A, Nolan, Y, Campbell, VA, Lynch, MA.Lipopolysaccharide-induced increase in signalling in hippocampus is abrogated by IL-10-a role for IL-1 beta? J Neurochem. 2004; 88:63546.CrossRefGoogle Scholar
49.Viviani, B, Bartesaghi, S, Gardoni, F, Vezzani, A, Behrens, MM, Bartfai, T, et al.Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J Neurosci. 2003; 23:8692700.Google ScholarPubMed
50.Hu, S, Sheng, WS, Ehrlich, LC, Peterson, PK, Chao, CC.Cytokine effects on glutamate uptake by human astrocytes. Neuroimmunomodulation. 2000; 7:1539.CrossRefGoogle ScholarPubMed
51.Bezzi, P, Domercq, M, Brambilla, L, Galli, R, Schols, D, De Clercq, E, et al.CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci. 2001; 4:70210.CrossRefGoogle ScholarPubMed
52.Casamenti, F, Prosperi, C, Scali, C, Giovannelli, L, Colivicchi, MA, Faussone-Pellegrini, MS, et al.Interleukin-1beta activates forebrain glial cells and increases nitric oxide production and cortical glutamate and GABA release in vivo: implications for Alzheimer’s disease. Neuroscience. 1999; 91:83142.CrossRefGoogle Scholar
53.Wang, S, Cheng, Q, Malik, S, Yang, J.Interleukin-1beta inhibits gamma-aminobutyric acid type A (GABA(A)) receptor current in cultured hippocampal neurons. J Pharmacol Exp Ther. 2000; 292:497504.Google ScholarPubMed
54.Helminen, M, Vesikari, T.Increased interleukin-1 (IL-1) production from LPS-stimulated peripheral blood monocytes in children with febrile convulsions. Acta Paediatr Scand. 1990; 79:8106.CrossRefGoogle ScholarPubMed
55.Matsuo, M, Sasaki, K, Ichimaru, T, Nakazato, S, Hamasaki, Y.Increased IL-1beta production from dsRNA-stimulated leukocytes in febrile seizures. Pediatr Neurol. 2006; 35:1026.CrossRefGoogle ScholarPubMed
56.Pociot, F, Mølvig, J, Wogensen, L, Worsaae, H, Nerup, J.A TaqI polymorphism in the human interleukin-1 beta (IL-1 beta) gene correlates with IL-1 beta secretion in vitro. Eur J Clin Invest. 1992; 22:396402.CrossRefGoogle Scholar
57.Kira, R, Torisu, H, Takemoto, M, Nomura, A, Sakai, Y, Sanefuji, M, et al.Genetic susceptibility to simple febrile seizures: interleukin-1beta promoter polymorphisms are associated with sporadic cases. Neurosci Lett. 2005; 384:23944.CrossRefGoogle ScholarPubMed
58.Virta, M, Hurme, M, Helminen, M.Increased frequency of interleukin-1beta (-511) allele 2 in febrile seizures. Pediatr Neurol. 2002; 26:1925.CrossRefGoogle ScholarPubMed
59.Kanemoto, K, Kawasaki, J, Yuasa, S, Kumaki, T, Tomohiro, O, Kaji, R, et al.Increased frequency of interleukin-1beta-511T allele in patients with temporal lobe epilepsy, hippocampal sclerosis, and prolonged febrile convulsion. Epilepsia. 2003; 44:7969.CrossRefGoogle ScholarPubMed
60.Serdaroğlu, G, Alpman, A, Tosun, A, Pehlivan, S, Ozkinay, F, Tekgül, H, Gökben, S.Febrile seizures: interleukin 1beta and interleukin-1 receptor antagonist polymorphisms. Pediatr Neurol. 2009; 40:1136.CrossRefGoogle ScholarPubMed
61.Lahat, E, Livne, M, Barr, J, Katz, Y.Interleukin-1beta levels in serum and cerebrospinal fluid of children with febrile seizures. Pediatr Neurol. 1997; 17:346.CrossRefGoogle Scholar
62.Tomoum, HY, Badawy, NM, Mostafa, AA, Harb, MY.Plasma interleukin-1beta levels in children with febrile seizures. J Child Neurol. 2007; 22:68992.CrossRefGoogle Scholar
63.Haspolat, S, Anlar, B, Köse, G, Coskun, M, Yegin, O.Interleukin-1beta, interleukin-1 receptor antagonist levels in patients with subacute sclerosing panencephalitis and the effects of different treatment protocols. J Child Neurol. 2001; 16:41720.CrossRefGoogle Scholar
64.Riazi, K, Galic, MA, Kuzmiski, JB, Ho, W, Sharkey, KA, Pittman, QJ.Microglial activation and TNFalpha production mediate altered CNS excitability following peripheral inflammation. Proc Natl Acad Sci USA. 2008; 105:171516.CrossRefGoogle ScholarPubMed
65.Konsman, JP, Veeneman, J, Combe, C, Poole, S, Luheshi, GN, Dantzer, R.Central nervous action of interleukin-1 mediates activation of limbic structures and behavioural depression in response to peripheral administration of bacterial lipopolysaccharide. Eur J Neurosci. 2008; 28:2499510.CrossRefGoogle ScholarPubMed
66.Rummel, C, Inoue, W, Sachot, C, Poole, S, Hübschle, T, Luheshi, GN.Selective contribution of interleukin-6 and leptin to brain inflammatory signals induced by systemic LPS injection in mice. J Comp Neurol. 2008; 511:37395.CrossRefGoogle ScholarPubMed
67.Hart, Y.Rasmussen’s encephalitis. Epileptic Disord. 2004; 6:13344.Google ScholarPubMed
68.Hart, YM, Cortez, M, Andermann, F, Hwang, P, Fish, DR, Dulac, O, et al.Medical treatment of Rasmussen’s syndrome (chronic encephalitis and epilepsy): effect of high-dose steroids or immunoglobulins in 19 patients. Neurology 1994; 44:10306.CrossRefGoogle ScholarPubMed
69.Walter, GF, Renella, RR.Epstein-Barr virus in brain and Rasmussen’s encephalitis. Lancet. 1989; 1:27980.CrossRefGoogle ScholarPubMed
70.Power, C, Poland, SD, Blume, WT, Girvin, JP, Rice, GP.Cytomegalo-virus and Rasmussen’s encephalitis. Lancet. 1990; 336:12824.CrossRefGoogle Scholar
71.Farrell, MA, DeRosa, MJ, Curran, JG, Secor, DL, Cornford, ME, Comair, YG, et al.Neuropathologic findings in cortical resections (including hemispherectomies) performed for the treatment of intractable childhood epilepsy. Acta Neuropathol. 1992; 83: 24659.CrossRefGoogle ScholarPubMed
72.O’Meara, M, Ouvrier, R.Viral encephalitis in children. Curr Opin Pediatr. 1996; 8: 115.CrossRefGoogle ScholarPubMed
73.Panayiotopoulos, CP, Michael, M, Sanders, S, Valeta, T, Koutroumanidis, M.Benign childhood focal epilepsies: assessment of established and newly recognized syndromes. Brain. 2008; 131:226486.CrossRefGoogle Scholar
74.Scheffer, IE, Harkin, LA, Grinton, BE, Dibbens, LM, Turner, SJ, Zielinski, MA, et al.Temporal lobe epilepsy and GEFS+ phenotypes associated with SCN1B mutations. Brain. 2007; 130:1009.CrossRefGoogle ScholarPubMed
75.Harkin, LA, McMahon, JM, Iona, X, Dibbens, L, Pelekanos, JT, Zuberi, SM, et al.The spectrum of SCN1A-related infantile epileptic encephalopathies. Brain. 2007; 130:84352.CrossRefGoogle ScholarPubMed
76.Dubé, C, Vezzani, A, Behrens, M, Bartfai, T, Baram, TZ.Interleukin-1beta contributes to the generation of experimental febrile seizures. Ann Neurol. 2005; 57:1525.CrossRefGoogle ScholarPubMed
77.Gadomski, AM, Permutt, T, Stanton, B.Correcting respiratory rate for the presence of fever. J Clin Epidemiol. 1994; 47:10439.CrossRefGoogle ScholarPubMed
78.Taylor, JA, Del Beccaro, M, Done, S, Winters, W.Establishing clinically relevant standards for tachypnea in febrile children younger than 2 years. Arch Pediatr Adolesc Med. 1995; 149: 2837.CrossRefGoogle ScholarPubMed
79.Kaila, K, Ransom, B. 1998. Concept of pH and its importance in neurobiology. In: pH and Brain Function. Kaila, K, Ransom, B, editors. New York: Wiley-Liss; 1998. p. 310.Google Scholar
80.Jarolimek, W, Misgeld, U, Lux, HD.Activity dependent alkaline and acid transients in guinea pig hippocampal slices. Brain Res. 1989; 505:22532.CrossRefGoogle ScholarPubMed
81.Schuchmann, S, Vanhatalo, S, Kaila, K.Neurobiological and physiological mechanisms of fever-related epileptiform syndromes. Brain Dev. 2009; 31:37882.CrossRefGoogle ScholarPubMed
82.Schuchmann, S, Schmitz, D, Rivera, C, Vanhatalo, S, Salmen, B, Mackie, K, et al.Experimental febrile seizures are precipitated by a hyperthermia-induced respiratory alkalosis. Nat Med. 2006; 12:81723.CrossRefGoogle ScholarPubMed
83.Schuchmann, S, Tolner, EA, Marshall, P, Vanhatalo, S, Kaila, K.Pronounced increase in breathing rate in the “hair dryer model” of experimental febrile seizures. Epilepsia. 2008; 49:9268.CrossRefGoogle Scholar
84.Bocti, C, Robitaille, Y, Diadori, P, Lortie, A, Mercier, C, Bouthillier, A, et al.The pathological basis of temporal lobe epilepsy in childhood. Neurology. 2003; 60:1915.CrossRefGoogle ScholarPubMed
85.Germano, IM, Zhang, YF, Sperber, EF, Moshé, SL.Neuronal migration disorders increase susceptibility to hyperthermia-induced seizures in developing rats. Epilepsia. 1996; 37:90210.CrossRefGoogle ScholarPubMed
86.Scantlebury, MH, Ouellet, PL, Psarropoulou, C, Carmant, L.Freeze lesion-induced focal cortical dysplasia predisposes to atypical hyperthermic seizures in the immature rat. Epilepsia. 2004; 45: 592600.CrossRefGoogle ScholarPubMed
87.Scantlebury, MH, Gibbs, SA, Foadjo, B, Lema, P, Psarropoulou, C, Carmant, L.Febrile seizures in the predisposed brain: a new model of temporal lobe epilepsy. Ann Neurol. 2005; 58:419.CrossRefGoogle ScholarPubMed
88.Gibbs, SA, Scantlebury, MH, Awad, P, Lema, P, Essouma, JB, Parent, M, et al.Hippocampal atrophy and abnormal brain development following a prolonged hyperthermic seizure in the immature rat with a focal neocortical lesion. Neurobiol Dis. 2008; 32:17682.CrossRefGoogle ScholarPubMed
89.Vestergaard, M, Pedersen, CB, Sidenius, P, Olsen, J, Christensen, J.The long-term risk of epilepsy after febrile seizures in susceptible subgroups. Am J Epidemiol. 2007; 165:9118.CrossRefGoogle Scholar
90.Camfield, P, Camfield, C, Gordon, K, Dooley, J.What types of epilepsy are preceded by febrile seizures? A population-based study of children. Dev Med Child Neurol. 1994; 36:88792.CrossRefGoogle Scholar
91.Tarkka, R, Pääkkö, E, Pyhtinen, J, Uhari, M, Rantala, H.Febrile seizures and mesial temporal sclerosis: no association in a long-term follow-up study. Neurology. 2003; 60:2158.CrossRefGoogle Scholar
92.Pittau, F, Bisulli, F, Mai, R, Fares, JE, Vignatelli, L, Labate, A, et al.Prognostic factors in patients with mesial temporal lobe epilepsy. Epilepsia. 2009; 50 Suppl 1:414.CrossRefGoogle ScholarPubMed
93.Kanemoto, K, Takuji, N, Kawasaki, J, Kawai, I.Characteristics and treatment of temporal lobe epilepsy with a history of complicated febrile convulsion. J Neurol Neurosurg Psychiatry. 1998; 64:2458.CrossRefGoogle ScholarPubMed
94.Schmidt, D, Tsai, JJ, Janz, D.Febrile seizures in patients with complex partial seizures. Acta Neurol Scand. 1985; 72:6871.CrossRefGoogle Scholar
95.Janszky, J, Schulz, R, Ebner, A.Clinical features and surgical outcome of medial temporal lobe epilepsy with a history of complex febrile convulsions. Epilepsy Res. 2003; 55:18.CrossRefGoogle Scholar
96.Abou-Khalil, B, Andermann, E, Andermann, F, Olivier, A, Quesney, LF.Temporal lobe epilepsy after prolonged febrile convulsions: excellent outcome after surgical treatment. Epilepsia. 1993; 34:87883.CrossRefGoogle ScholarPubMed
97.Kwak, SE, Kim, JE, Kim, SC, Kwon, OS, Choi, SY, Kang, TC.Hyperthermic seizure induces persistent alteration in excitability of the dentate gyrus in immature rats. Brain Res. 2008; 1216: 115.CrossRefGoogle ScholarPubMed
98.Ateş, N, Akman, O, Karson, A.The effects of the immature rat model of febrile seizures on the occurrence of later generalized tonicclonic and absence epilepsy. Brain Res Dev Brain Res. 2005; 154:13740.CrossRefGoogle Scholar
99.Theodore, WH, DeCarli, C, Gaillard, WD.Total cerebral volume is reduced in patients with localization-related epilepsy and a history of complex febrile seizures. Arch Neurol. 2003; 60: 2502.CrossRefGoogle Scholar
100.Ellenberg, JH, Nelson, KB.Febrile seizures and later intellectual performance. Arch Neurol. 1978; 35:1721.CrossRefGoogle ScholarPubMed
101.Chang, YC, Guo, NW, Huang, CC, Wang, ST, Tsai, JJ.Neurocognitive attention and behavior outcome of school-age children with a history of febrile convulsions: a population study. Epilepsia. 2000; 41:41220.CrossRefGoogle ScholarPubMed
102.Mesquita, AR, Tavares, HB, Silva, R, Sousa, N.Febrile convulsions in developing rats induce a hyperanxious phenotype later in life. Epilepsy Behav. 2006; 9:4016.CrossRefGoogle ScholarPubMed
103.Werboff, J, Havlena, J.Febrile convulsions in infant rats, and later behavior. Science. 1963; 142:6845.CrossRefGoogle ScholarPubMed
104.Kornelsen, RA, Boon, F, Leung, LS, Cain, DP.The effects of a single neonatally induced convulsion on spatial navigation, locomotor activity and convulsion susceptibility in the adult rat. Brain Res. 1996; 706:1559.CrossRefGoogle ScholarPubMed
105.Lemmens, EM, Aendekerk, B, Schijns, OE, Blokland, A, Beuls, EA, Hoogland, G.Long-term behavioral outcome after early-life hyperthermia-induced seizures. Epilepsy Behav. 2009; 14: 30915.CrossRefGoogle ScholarPubMed
106.Nealis, JG, Rosman, NP, De Piero, TJ, Ouellette, EM.Neurologic sequelae of experimental febrile convulsions. Neurology. 1978; 28:24650.CrossRefGoogle ScholarPubMed
107.Chang, YC, Huang, AM, Kuo, YM, Wang, ST, Chang, YY, Huang, CC.Febrile seizures impair memory and cAMP response-element binding protein activation. Ann Neurol. 2003; 54:70618.CrossRefGoogle ScholarPubMed
108.Provenzale, JM, Barboriak, DP, VanLandingham, K, MacFall, J, Delong, D, Lewis, DV.Hippocampal MRI signal hyperintensity after febrile status epilepticus is predictive of subsequent mesial temporal sclerosis. AJR Am J Roentgenol. 2008; 190:97683.CrossRefGoogle ScholarPubMed
109.Hesdorffer, DC, Chan, S, Tian, H, Allen Hauser, W, Dayan, P, Leary, LD, et al.Are MRI-detected brain abnormalities associated with febrile seizure type? Epilepsia. 2008; 49:76571.CrossRefGoogle ScholarPubMed
110.Natsume, J, Bernasconi, N, Miyauchi, M, Naiki, M, Yokotsuka, T, Sofue, A, et al.Hippocampal volumes and diffusion-weighted image findings in children with prolonged febrile seizures. Acta Neurol Scand Suppl. 2007; 186:258.CrossRefGoogle ScholarPubMed
111.Scott, RC, King, MD, Gadian, DG, Neville, BG, Connelly, A.Hippocampal abnormalities after prolonged febrile convulsion: a longitudinal MRI study. Brain. 2003; 126:25517.CrossRefGoogle Scholar
112.Auer, T, Barsi, P, Bone, B, Angyalosi, A, Aradi, M, Szalay, C, et al.History of simple febrile seizures is associated with hippocampal abnormalities in adults. Epilepsia. 2008; 49:15629.CrossRefGoogle Scholar
113.Dubé, C, Yu, H, Nalcioglu, O, Baram, TZ.Serial MRI after experimental febrile seizures: altered T2 signal without neuronal death. Ann Neurol. 2004; 56:70914.CrossRefGoogle ScholarPubMed
114.Bender, RA, Dubé, C, Gonzalez-Vega, R, Mina, EW, Baram, TZ.Mossy fiber plasticity and enhanced hippocampal excitability, without hippocampal cell loss or altered neurogenesis, in an animal model of prolonged febrile seizures. Hippocampus. 2003; 13:399412.CrossRefGoogle ScholarPubMed
115.Toth, Z, Yan, XX, Haftoglou, S, Ribak, CE, Baram, TZ.Seizure-induced neuronal injury: vulnerability to febrile seizures in an immature rat model. J Neurosci. 1998; 18:428594.Google Scholar
116.Sendrowski, K, Sobaniec, W, Sobaniec-Lotowska, ME, Artemowicz, B.Topiramate as a neuroprotectant in the experimental model of febrile seizures. Adv Med Sci. 2007; 52 Suppl 1:1615.Google Scholar
117.Lemmens, EM, Lubbers, T, Schijns, OE, Beuls, EA, Hoogland, G.Gender differences in febrile seizure-induced proliferation and survival in the rat dentate gyrus. Epilepsia. 2005; 46:160312.CrossRefGoogle ScholarPubMed
118.Lemmens, EM, Schijns, OE, Beuls, EA, Hoogland, G.Cytogenesis in the dentate gyrus after neonatal hyperthermia-induced seizures: what becomes of surviving cells? Epilepsia. 2008; 49:85360.CrossRefGoogle ScholarPubMed
119.Pape, HC.Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. Annu Rev Physiol. 1996; 58: 299327.CrossRefGoogle ScholarPubMed
120.Siegelbaum, SA.Presynaptic facilitation by hyperpolarization-activated pacemaker channels. Nat Neurosci. 2000; 3:1012.CrossRefGoogle ScholarPubMed
121.Chen, K, Aradi, I, Thon, N, Eghbal-Ahmadi, M, Baram, TZ, Soltesz, I.Persistently modified h-channels after complex febrile seizures convert the seizure-induced enhancement of inhibition to hyperexcitability. Nat Med. 2001; 7:3317.CrossRefGoogle ScholarPubMed
122.Brewster, A, Bender, RA, Chen, Y, Dubé, C, Eghbal-Ahmadi, M, Baram, TZ.Developmental febrile seizures modulate hippocampal gene expression of hyperpolarization-activated channels in an isoform- and cell-specific manner. J Neurosci. 2002; 22:45919.Google Scholar
123.Brewster, AL, Bernard, JA, Gall, CM, Baram, TZ.Formation of heteromeric hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in the hippocampus is regulated by developmental seizures. Neurobiol Dis. 2005; 19:2007.CrossRefGoogle ScholarPubMed
124.Kamal, A, Notenboom, RG, de Graan, PN, Ramakers, GM.Persistent changes in action potential broadening and the slow afterhyperpolarization in rat CA1 pyramidal cells after febrile seizures. Eur J Neurosci. 2006; 23:22304.CrossRefGoogle ScholarPubMed
125.Richichi, C, Brewster, AL, Bender, RA, Simeone, TA, Zha, Q, Yin, HZ, et al.Mechanisms of seizure-induced ‘transcriptional channelopathy’ of hyperpolarization-activated cyclic nucleotide gated (HCN) channels. Neurobiol Dis. 2008; 29:297305.CrossRefGoogle ScholarPubMed
126.Chen, K, Baram, TZ, Soltesz, I.Febrile seizures in the developing brain result in persistent modification of neuronal excitability in limbic circuits. Nat Med. 1999; 5:88894.CrossRefGoogle ScholarPubMed
127.Chen, K, Ratzliff, A, Hilgenberg, L, Gulyás, A, Freund, TF, Smith, M, et al.Long-term plasticity of endocannabinoid signaling induced by developmental febrile seizures. Neuron. 2003; 39:599611.CrossRefGoogle ScholarPubMed
128.González Ramírez, M, Orozco Suárez, S, Salgado Ceballos, H, Feria Velasco, A, Rocha, L.Hyperthermia-induced seizures modify the GABA(A) and benzodiazepine receptor binding in immature rat brain. Cell Mol Neurobiol. 2007; 27:21127.CrossRefGoogle ScholarPubMed
129.Han, Y, Qin, J, Bu, DF, Chang, XZ, Yang, ZX.Successive alterations of hippocampal gamma-aminobutyric acid B receptor subunits in a rat model of febrile seizure. Life Sci. 2006; 78:294452.CrossRefGoogle Scholar
130.Tsai, ML, Leung, LS.Decrease of hippocampal GABA B receptor-mediated inhibition after hyperthermia-induced seizures in immature rats. Epilepsia. 2006; 47:27787.CrossRefGoogle Scholar
You have Access
34
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Febrile Seizures: Current Views and Investigations
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Febrile Seizures: Current Views and Investigations
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Febrile Seizures: Current Views and Investigations
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *