Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T04:39:00.768Z Has data issue: false hasContentIssue false

Early Onset Epilepsy and Inherited Metabolic Disorders: Diagnosis and Management

Published online by Cambridge University Press:  02 December 2014

Asuri N. Prasad*
Affiliation:
Clinical Neurosciences, Department of Pediatrics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
G. F. Hoffmann
Affiliation:
Department of General Pediatrics, University Children's Hospital, Heidelberg, Germany
*
Clinical Neurosciences, Department of Pediatrics, Schulich School of Medicine and Dentistry, University of Western Ontario, 800 Commissioner Rd. East, London, Ontario, N6C 4A5, Canada.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Epileptic encephalopathies presenting in early life present a diagnostic and therapeutic challenge. These disorders present with multiple seizure types that are treatment resistant and associated with significant abnormalities on electroencephalographic studies. The underlying etiology in many cases may be related to an inborn error of metabolism. Efforts to establish the specific diagnosis of a genetic defect or an inborn error of metabolism often results in requests for a vast array of biochemical and molecular tests leading to an expensive workup. In this review, we present the clinician with information that provides a rationale for a selective and nuanced approach to biochemical assays, and initial treatment strategies while waiting for a specific diagnosis to be established. A careful consideration of the presentation, identification of potentially treatable conditions, and consultation with the biochemical genetics laboratory can lead to a greater measure of success while limiting cost overruns. Such a targeted approach is hoped will lead to an early diagnosis and appropriate interventions.

Type
Review Article
Copyright
Copyright © The Canadian Journal of Neurological 2010

References

1. Dulac, O. Epileptic encephalopathy. Epilepsia. 2001;42 Suppl 3: 236.Google Scholar
2. Nabbout, R, Dulac, O. Epileptic encephalopathies: a brief overview. J Clin Neurophysiol. 2003 Nov-Dec;20(6):3937.Google Scholar
3. Hrachovy, RA, Frost, JD Jr. Infantile epileptic encephalopathy with hypsarrhythmia (infantile spasms/West syndrome). J Clin Neurophysiol. 2003 Nov-Dec;20(6):40825.Google Scholar
4. Ohtahara, S, Yamatogi, Y. Epileptic encephalopathies in early infancy with suppression-burst. J Clin Neurophysiol. 2003 Nov-Dec;20(6):398407.CrossRefGoogle ScholarPubMed
5. Holmes, GL, Ben-Ari, Y. The neurobiology and consequences of epilepsy in the developing brain. Ped Res. 2001 Mar;49(3): 3205.Google Scholar
6. Dzhala, VI, Talos, DM, Sdrulla, DA, Brumback, AC, Mathews, GC, Benke, TA, et al. NKCC1 transporter facilitates seizures in the developing brain. Nat Med. 2005 Nov;11(11): 120513.CrossRefGoogle ScholarPubMed
7. Sankar, R. A time to convulse, a time to stop em leader. Epilepsy Curr. 2003 May;3(3):823.CrossRefGoogle ScholarPubMed
8. Pearl, PL. New treatment paradigms in neonatal metabolic epilepsies. J Inherit Metab Dis. 2009 Apr;32(2):20413.Google Scholar
9. Prasad, A, Prasad, C. Linking biochemical pathways to seizure susceptibility in early life; lessons from inborn errors of metabolism. In: Takahashi, T, Fukuyama, Y, editors. Biology of seizure susceptibility in the developing brain. Montrouge: John Libbey Eurotext. 2008. p. 10127.Google Scholar
10. Köhler, M, Assmann, B, Bräutigam, C, Storm, W, Marie, S, Vincent, MF, et al. Adenylosuccinase deficiency: possibly underdiagnosed encephalopathy with variable clinical features. Eur J Paediatr Neurol. 1999;3(1):36.CrossRefGoogle ScholarPubMed
11. Wolf, NI, Bast, T, Surtees, R. Epilepsy in inborn errors of metabolism. Epileptic Disord. 2005 Jun;7(2):6781.Google Scholar
12. Vigevano, F, Bartuli, A. Infantile epileptic syndromes and metabolic etiologies. J Child Neurol. 2002 Dec;17 Suppl 3:3S913; discussion 3S4.Google Scholar
13. Bahi-Buisson, N, Kaminska, A, Nabbout, R, Barnerias, C, Desguerre, I, De Lonlay, P, et al. Epilepsy in Menkes disease: analysis of clinical stages. Epilepsia. 2006 Feb;47(2):3806.CrossRefGoogle ScholarPubMed
14. Chen, PT, Young, C, Lee, WT, Wang, PJ, Peng, SS, Shen, YZ. Early epileptic encephalopathy with suppression burst electroencephalographic pattern-an analysis of eight Taiwanese patients. Brain Dev. 2001 Nov;23(7):71520.CrossRefGoogle ScholarPubMed
15. Gloyn, AL, Diatloff-Zito, C, Edghill, EL, Bellanné-Chantelot, C, Nivot, S, Coutant, R, et al. KCNJ11 activating mutations are associated with developmental delay, epilepsy and neonatal diabetes syndrome and other neurological features. Eur J Hum Genet. 2006 Jul;14(7):82430.CrossRefGoogle ScholarPubMed
16. Bahi-Buisson, N, Eisermann, M, Nivot, S, Bellanné-Chantelot, C, Dulac, O, Bach, N, et al. Infantile spasms as an epileptic feature of DEND syndrome associated with an activating mutation in the potassium adenosine triphosphate (ATP) channel, Kir6.2. J Child Neurol. 2007 Sep;22(9):114750.Google Scholar
17. Proks, P, Arnold, AL, Bruining, J, Girard, C, Flanagan, SE, Larkin, B, et al. A heterozygous activating mutation in the sulphonylurea receptor SUR1 (ABCC8) causes neonatal diabetes. Hum Mol Gen. 2006 Jun 1;15(11):1793800.Google Scholar
18. Shimomura, K, Hörster, F, de Wet, H, Flanagan, SE, Ellard, S, Hattersley, AT, et al. A novel mutation causing DEND syndrome: a treatable channelopathy of pancreas and brain. Neurology. 2007 Sep 25;69(13):13429.CrossRefGoogle ScholarPubMed
19. Stanley, CA, Lieu, YK, Hsu, BY, Burlina, AB, Greenberg, CR, Hopwood, NJ, et al. Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. N Engl J Med. 1998 May 7;338(19): 13527.Google Scholar
20. Stanley, CA, Fang, J, Kutyna, K, Hsu, BY, Ming, JE, Glaser, B, et al. Molecular basis and characterization of the hyperinsulinism/hyperammonemia syndrome: predominance of mutations in exons 11 and 12 of the glutamate dehydrogenase gene. HI/HA Contributing Investigators. Diabetes. 2000 Apr;49(4):66773.Google Scholar
21. Raizen, DM, Brooks-Kayal, A, Steinkrauss, L, Tennekoon, GI, Stanley, CA, Kelly, A. Central nervous system hyperexcitability associated with glutamate dehydrogenase gain of function mutations. J Pediatr. 2005 Mar;146(3):38894.Google Scholar
22. Bahi-Buisson, N, El Sabbagh, S, Soufflet, C, Escande, F, Boddaert, N, Valayannopoulos, V, et al. Myoclonic absence epilepsy with photosensitivity and a gain of function mutation in glutamate dehydrogenase. Seizure. 2008 Oct;17(7):65864.Google Scholar
23. Clancy, RR. Prolonged electroencephalogram monitoring for seizures and their treatment. Clin Perinatol. 2006 Sep;33(3):64965, vi.Google Scholar
24. Connell, J, Oozeer, R, de Vries, L, Dubowitz, LM, Dubowitz, V. Continuous EEG monitoring of neonatal seizures: diagnostic and prognostic considerations. Arch Dis Child. 1989 Apr;64(4): 4528.Google Scholar
25. Scher, MS, Alvin, J, Gaus, L, Minnigh, B, Painter, MJ. Uncoupling of EEG-clinical neonatal seizures after antiepileptic drug use. Pediatr Neurol. 2003 Apr;28(4):27780.Google Scholar
26. Shah, DK, Mackay, MT, Lavery, S, Watson, S, Harvey, AS, Zempel, J, et al. Accuracy of bedside electroencephalographic monitoring in comparison with simultaneous continuous conventional electroencephalography for seizure detection in term infants. Pediatrics. 2008 Jun;121(6):114654.Google Scholar
27. Gallagher, RC, Van Hove, JL, Scharer, G, Hyland, K, Plecko, B, Waters, PJ, et al. Folinic acid-responsive seizures are identical to pyridoxine-dependent epilepsy. Ann Neurol. 2009 May;65(5): 5506.Google Scholar
28. Struys, EA, Jakobs, C. Alpha-aminoadipic semialdehyde is the biomarker for pyridoxine dependent epilepsy caused by alphaaminoadipic semialdehyde dehydrogenase deficiency. Mol Genet Metab. 2007 Aug;91(4):405.Google Scholar
29. Bagci, S, Zschocke, J, Hoffmann, GF, Bast, T, Klepper, J, Müller, A, et al. Pyridoxal phosphate-dependent neonatal epileptic encephalopathy. Arch Dis Child Fetal Neonatal Ed. 2008 Mar;93 (2):F1512.Google Scholar
30. Hoffmann, GF, Surtees, RA, Wevers, RA. Cerebrospinal fluid investigations for neurometabolic disorders. Neuropediatrics. 1998 Apr;29(2):5971.CrossRefGoogle ScholarPubMed
31. Seidner, G, Alvarez, MG, Yeh, JI, O’Driscoll, KR, Klepper, J, Stump, TS, et al. GLUT-1 deficiency syndrome caused by haploinsufficiency of the blood-brain barrier hexose carrier. Nat Genet. 1998 Feb;18(2):18891.Google Scholar
32. Gillis, L, Kaye, E. Diagnosis and management of mitochondrial diseases. Pediatr Clin North Am. 2002 Feb;49(1):20319.CrossRefGoogle ScholarPubMed
33. Willemsen, MA, Mavinkurve-Groothuis, AM, Wevers, RA, Rotteveel, JJ, Jakobs, C. Pipecolic acid: a diagnostic marker in pyridoxinedependent epilepsy. Ann Neurol. 2005 Oct;58(4):653.Google Scholar
34. Clayton, PT, Surtees, RA, DeVile, C, Hyland, K, Heales, SJ. Neonatal epileptic encephalopathy. Lancet. 2003 May 10;361(9369):1614.Google Scholar
35. Mills, PB, Surtees, RA, Champion, MP, Beesley, CE, Dalton, N, Scambler, PJ, et al. Neonatal epileptic encephalopathy caused by mutations in the PNPO gene encoding pyridox(am)ine 5’-phosphate oxidase. Hum Mol Gen. 2005 Apr 15;14(8):107786.CrossRefGoogle ScholarPubMed
36. Verbeek, MM, Blom, AM, Wevers, RA, Lagerwerf, AJ, van de Geer, J, Willemsen, MA. Technical and biochemical factors affecting cerebrospinal fluid 5-MTHF, biopterin and neopterin concentrations. Mol Genet Metab. 2008 Nov;95(3):12732.Google Scholar
37. Longo, N. Disorders of biopterin metabolism. J Inherit Metab Dis. 2009 Jun;32(3):33342.CrossRefGoogle ScholarPubMed
38. Hobson, EE, Thomas, S, Crofton, PM, Murray, AD, Dean, JC, Lloyd, D. Isolated sulphite oxidase deficiency mimics the features of hypoxic ischaemic encephalopathy. Eur J Pediatr. 2005 Nov;164 (11):6559.Google Scholar
39. Johnson, JL, Waud, WR, Rajagopalan, KV, Duran, M, Beemer, FA, Wadman, SK. Inborn errors of molybdenum metabolism: combined deficiencies of sulfite oxidase and xanthine dehydrogenase in a patient lacking the molybdenum cofactor. Proc Natl Acad Sci USA. 1980 Jun;77(6):37159.Google Scholar
40. Rupar, CA, Gillett, J, Gordon, BA, Ramsay, DA, Johnson, JL, Garrett, RM, et al. Isolated sulfite oxidase deficiency. Neuropediatrics. 1996 Dec;27(6):299304.Google Scholar
41. Watkins, PA, McGuinness, MC, Raymond, GV, Hicks, BA, Sisk, JM, Moser, AB, et al. Distinction between peroxisomal bifunctional enzyme and acyl-CoA oxidase deficiencies. Ann Neurol. 1995 Sep;38(3):4727.Google Scholar
42. Van Maldergem, L, Espeel, M, Wanders, RJ, Roels, F, Gerard, P, Scalais, E, et al. Neonatal seizures and severe hypotonia in a male infant suffering from a defect in peroxisomal beta-oxidation. Neuromuscul Disord. 1992;2(3):21724.Google Scholar
43. Stockler, S, Schutz, PW, Salomons, GS. Cerebral creatine deficiency syndromes: clinical aspects, treatment and pathophysiology. Subcell Biochem. 2007;46:14966.CrossRefGoogle ScholarPubMed
44. Rubio-Gozalbo, ME, Heerschap, A, Trijbels, JM, De Meirleir, L, Thijssen, HO, Smeitink, JA. Proton MR spectroscopy in a child with pyruvate dehydrogenase complex deficiency. Magn Reson Imaging. 1999 Jul;17(6):93944.Google Scholar
45. Barkovich, AJ, Good, WV, Koch, TK, Berg, BO. Mitochondrial disorders: analysis of their clinical and imaging characteristics. Am J Neuroradiol. 1993 Sep-Oct;14(5):111937.Google Scholar
46. Huisman, TA, Thiel, T, Steinmann, B, Zeilinger, G, Martin, E. Proton magnetic resonance spectroscopy of the brain of a neonate with nonketotic hyperglycinemia: in vivo-in vitro (ex vivo) correlation. Eur Radiol. 2002 Apr;12(4):85861.CrossRefGoogle ScholarPubMed
47. Gabis, L, Parton, P, Roche, P, Lenn, N, Tudorica, A, Huang, W. In vivo 1H magnetic resonance spectroscopic measurement of brain glycine levels in nonketotic hyperglycinemia. J Neuroimaging. 2001 Apr;11(2):20911.Google Scholar
48. de Koning, TJ, Jaeken, J, Pineda, M, Van Maldergem, L, Poll-The, BT, van der Knaap, MS. Hypomyelination and reversible white matter attenuation in 3-phosphoglycerate dehydrogenase deficiency. Neuropediatrics. 2000 Dec;31(6):28792.Google Scholar
49. Bachmann, C. Long-term outcome of urea cycle disorders. Acta Gastroenterol Belg. 2005 Oct-Dec;68(4):4668.Google Scholar
50. Bachmann, C. Outcome and survival of 88 patients with urea cycle disorders: a retrospective evaluation. Eur J Pediatr. 2003 Jun;162 (6):4106.Google Scholar