Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-11T17:22:53.133Z Has data issue: false hasContentIssue false

Dendritic Pathology: An Overview of Golgi Studies in Man

Published online by Cambridge University Press:  18 September 2015

Venkita Jagadha
Affiliation:
Division of Neuropathology (Department of Pathology), The Hospital for Sick Children and the University of Toronto, Toronto
Laurence E. Becker*
Affiliation:
Division of Neuropathology (Department of Pathology), The Hospital for Sick Children and the University of Toronto, Toronto
*
Division of Neuropathology, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario, Canada M5G 1X8
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Study of dendritic morphology through Golgi impregnation techniques has significantly furthered our understanding of neuronal development, maturation, and senescence. It has also provided insight into the pathogenesis of a wide spectrum of disease processes ranging from brain malformations to degenerative disorders. Golgi impregnation remains virtually the only method for demonstrating dendritic morphology. It delineates the profile of the individual neuron and its dendritic ramifications with unsurpassed clarity. Although it has been widely applied to experimental neuroscience involving animal tissue, its application to human material has been limited. This review summarizes the information on dendritic development and pathology in the human brain revealed by the use of the Golgi method.

Type
Original Articles
Copyright
Copyright © Canadian Neurological Sciences Federation 1989

References

REFERENCES

1.Conel, JL. The postnatal development of the human cerebral cor-tex. Cambridge, Mass., Harvard University Press, vol 1–VI1I, 1939, 1941, 1947, 1951, 1955, 1959, 1963, 1967.Google Scholar
2.Poliakov, GI. Some results of research into development of neu-ronal structure of the cortical ends of the analyzers in man. J Comp Neurol 1961; 117: 197212.CrossRefGoogle Scholar
3.Rabinowicz, TH. The cerebral cortex of the premature infant of the 8th month. In: Purpura, DP, Schade, JD, eds. Growth and Maturation of the Brain. Prog Brain Res 1964; 4: 3992CrossRefGoogle Scholar
4.Marin-Padilla, M. Prenatal and early postnatal ontogenesis of the human motor cortex: a Golgi study. I. The sequential development of the cortical layers. Brain Res 1970; 23: 167183.CrossRefGoogle Scholar
5.Purpura, DP. Dendritic differentiation in human cerebral cortex. Normal and aberrant developmental patterns. Adv Neurol 1975; 12:91116.Google ScholarPubMed
6.Purpura, DP. Comparative physiology of dendrites, in: Quarton, GC, Melnechuk, T, and Schmitt, FO, eds. The Neurosciences: A Study Program. New York: Rockefeller University Press 1967; 372393.Google Scholar
7.Gray, EG. Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J Anat 1959; 93: 420433.Google ScholarPubMed
8.Valverde, F. The Golgi method. A tool for comparative structural analyses. In: Nauta, WJH, Ebbesson, SOE, eds. Contemporary Research Methods in Neuroanatomy. New York: Springer–Verlag 1970; 1231.CrossRefGoogle Scholar
9.Scheibel, ME, Scheibel, AB. The rapid Golgi method. Indian sum-mer or renaissance? In: Nauta, WJH, Ebbesson, SOE, eds. Contemporary Research Methods in Neuroanatomy. New York: Springer–Verlag 1970; 111.Google Scholar
10.Ramón-Moliner, E. The Golgi-Cox technique. In: Nauta, WJH, Ebbesson, SOE, eds. Contemporary Research Methods in Neuroanatomy. New York: Springer–Verlag 1970; 3255.CrossRefGoogle Scholar
11.Scheibel, ME, Scheibel, AB. The methods of Golgi. In: Robertson, RT, ed. Neuroanatomical Research Techniques 1978; 89114.CrossRefGoogle Scholar
12.Chan, F-W. Golgi methods in the study of nerve cells: a literature review. Can J Med Tech 1979; 41: E228–236.Google Scholar
13.Millhouse, OE. The Golgi methods. In: Heimer, L, Robards, MJ, eds. Neuroanatomical Tract-Tracing Methods. New York: Plenum Press 1981; 311344.CrossRefGoogle Scholar
14.Morest, DK. The Golgi methods. In: Heym, C, Forssmann, WG, eds. Techniques in Neuroanatomical Research. Berlin: Springer 1981; 124138.CrossRefGoogle Scholar
15.Braak, H, Braak, E. Golgi preparations as a tool in neuropathology with particular reference to investigations of the human telen-cephalic cortex. Prog Neurobiol 1985; 25: 93139.CrossRefGoogle ScholarPubMed
16.Gabbott, PL, Somogyi, J. The ‘single’ section Golgi-impregnation procedure: methodological description. J Neurosci Methods 1984; 11: 221230.CrossRefGoogle ScholarPubMed
17.Williams, RS, Ferrante, RJ, Caviness, VS. The Golgi rapid method in clinical neuropathology: the morphologic consequences of suboptimal fixation. J Neuropathol Exp Neurol 1978; 37: 1333.CrossRefGoogle ScholarPubMed
18.Ramón, YCajal, S. Histologie du système nerveux de l’homme et des vertébrés, vol 2. Paris: Maloine 1911.Google Scholar
19.Schade, JP, van Groeningen, WB. Structural organization of the human cerebral cortex. I. Maturation of the middle frontal gyrus. Acta Anat (Basel) 1961; 47: 74111.CrossRefGoogle ScholarPubMed
20.Schade, JP, Meeter, K, van Groeningen, WB. Maturational aspects of the dendrites in the human cerebral cortex. Acta Morphol Neerl Scand 1962; 5: 3748.Google ScholarPubMed
21.Marin-Padilla, M. Origin of the pericellular baskets of the pyrami-dal cells of the human motor cortex: a Golgi study. Brain Res 1969; 14:633646.CrossRefGoogle ScholarPubMed
22.Marin-Padilla, M. Prenatal and early postnatal ontogenesis of the human motor cortex: a Golgi study. II. The basket–pyramidal system. Brain Res 1970; 23: 185191.CrossRefGoogle ScholarPubMed
23.Marin-Padilla, M. Double origin of the pericellular baskets of the pyramidal cells of the human motor cortex: a Golgi study. Brain Res 1972; 38: 112.CrossRefGoogle ScholarPubMed
24.Purpura, DP. Morphogenesis of visual cortex in the preterm infant. In: Brazier, MAB, ed. Growth and Development of the Brain: Nutritional, Genetic, and Environmental Factors. New York: Raven Press 1975; 3349.Google Scholar
25.Purpura, DP. Developmental pathobiology of cortical neurons in immature human brain. In: Gluck, L, ed. Intrauterine Asphyxia and the Developing Fetal Brain. Chicago: Yearbook Medical Publishers Inc. 1977; 349373.Google Scholar
26.Paldino, AM, Purpura, DP. Quantitative analysis of the spatial dis-tribution of axonal and dendritic terminals of hippocampal pyramidal neurons in immature human brain. Exp Neurol 1979; 64: 604619.CrossRefGoogle Scholar
27.Paldino, AM, Purpura, DP. Branching patterns of hippocampal neurons of human fetus during dendritic differentiation. Exp Neurol 1979; 64: 620631.CrossRefGoogle ScholarPubMed
28.Takashima, S, Chan, F, Becker, LE, et al. Morphology of the developing visual cortex of the human infant. A quantitative and qualitative Golgi study. J Neuropathol Exp Neurol 1980; 39: 487501.CrossRefGoogle ScholarPubMed
29.Becker, LE, Armstrong, DL, Chan, F, et al. Dendritic development in human occipital cortical neurons. Dev Brain Res 1984; 13: 117124.CrossRefGoogle Scholar
30.Angevine, BJ Jr.Development of the hippocampal region. In: Isaacson, RL, Pribram, KH, eds. The Hippocampus. Volume 1: Structure and Development. New York: Plenum Press 1975; 6194.CrossRefGoogle Scholar
31.Marin-Padilla, M, Marin-Padilla, TM. Origin, prenatal development and structural organization of layer I of the human cerebral (motor) cortex. A Golgi study. Anat Embryol 1982; 164: 161206.CrossRefGoogle ScholarPubMed
32.Seldon, HL. Structure of human auditory cortex. I. Cytoarchitectonics and dendritic distributions. Brain Res 1981; 229: 277294.CrossRefGoogle ScholarPubMed
33.Seldon, HL. Structure of human auditory cortex. II. Axon distributions and morphological correlates of speech perception. Brain Res 1981; 229: 295310.CrossRefGoogle ScholarPubMed
34.Seldon, HL. Structure of human auditory cortex. III. Statistical analysis of dendritic trees. Brain Res 1982; 249:211221.CrossRefGoogle Scholar
35.Abdel-Maguid, TE, Bowsher, D. Classification of neurons by den-dritic branching pattern. A categorisation based on Golgi impregnation of the spinal and cranial somatic and visceral afferent and efferent cells in the adult human. J Anat 1984; 138: 689702.Google Scholar
36.Marin-Padilla, M. Number and distribution of the apical dendritic spines of the layer V pyramidal cells in man. J Comp Neurol 1967; 131:475490.CrossRefGoogle Scholar
37.Jones, EG, Powell, TPS. Morphological variations in the dendritic spines of the neocortex. J Cell Sci 1969; 5: 509529.CrossRefGoogle ScholarPubMed
38.Takashima, S, Becker, LE, Chan, F-W. Retardation of neuronal maturation in premature infants compared with term infants of the same postconceptional age. Pediatrics 1982; 69: 3339.CrossRefGoogle ScholarPubMed
39.Marin-Padilla, M. Structural abnormalities of the cerebral cortex in human chromosomal aberrations: a Golgi study. Brain Res 1972; 44: 625629.CrossRefGoogle ScholarPubMed
40.Marin-Padilla, M. Structural organization of the cerebral cortex (motor area) in human chromosomal aberrations. A Golgi study. 1. D) (13–15) trisomy, Patau syndrome. Brain Res 1974; 66: 375391.CrossRefGoogle Scholar
41.Huttenlocher, PR. Dendritic development in neocortex of children with mental defect and infantile spasms. Neurology 1974; 24: 203210.CrossRefGoogle ScholarPubMed
42.Purpura, DP. Dendritic spine “dysgenesis” and mental retardation. Science 1974; 186: 11261128.CrossRefGoogle ScholarPubMed
43.Huttenlocher, PR. Synaptic and dendritic development and mental defect. In: Buchwald, NA, Brazier, MAB, eds. Brain Mechanisms in Mental Retardation: UCLA Forum Med Sci, No. 18, New York: Academic Press 1975; 123140.CrossRefGoogle Scholar
44.Purpura, DP. Normal and aberrant neuronal development in the cerebral cortex of the human fetus and young infant. In: Buchwald, NA, Brazier, MAB, eds. Brain Mechanisms in Mental Retardation: UCLA Forum Med Sci, No. 18, New York: Academic Press 1975; 141169.CrossRefGoogle Scholar
45.Purpura, DP. Pathobiology of cortical neurons in metabolic and unclassified dementias. In: Katzman, R, ed. Congenital and Acquired Cognitive Disorders. New York: Raven Press 1979; 4368.Google Scholar
46.Marin-Padilla, M. Pyramidal cell abnormalities in the motor cor-tex of a child with Down’s syndrome: a Golgi study. J Comp Neurol 1976; 167: 6382.CrossRefGoogle Scholar
47.Suetsugu, M, Mehraein, P. Spine distribution along the apical den-drites of the pyramidal neurons in Down’s syndrome. A quantitative Golgi study. Acta Neuropathol (Beri) 1980; 50: 207210.CrossRefGoogle ScholarPubMed
48.Takashima, S, Becker, LE, Armstrong, DL, et al. Abnormal neu-ronal development in the visual cortex of the human fetus and infant with Down’s syndrome. A quantitative and qualitative Golgi study. Brain Res 1981; 225:121.CrossRefGoogle Scholar
49.Fabregues, I, Ferrer, I. Abnormal perisomatic structures in non-pyramidal neurons in the cerebral cortex in Down’s syndrome. Neuropathol Appi Neurobiol 1983; 9: 165170.CrossRefGoogle ScholarPubMed
50.Becker, LE, Armstrong, DL, Chan, F. Dendritic atrophy in children with Down’s syndrome. Ann Neurol 1986; 20: 520526.CrossRefGoogle ScholarPubMed
51.Williams, RS, Matthyse, S. Age-related changes in Down syn drome brain and the cellular pathology of Alzheimer disease. Prog Brain Res 1986; 70: 4967.CrossRefGoogle Scholar
52.Purpura, DP, Suzuki, K. Distortion of neuronal geometry and for mation of aberrant synapses in neuronal storage disease. Brain Res 1976; 116: 121.CrossRefGoogle Scholar
53.Williams, RS, Lott, IT, Ferrante, RJ, et al. The cellular pathology of neuronal ceroid-lipofuscinosis. A Golgi-electronmicroscopic study. Arc Neurol 1977; 34: 298305.CrossRefGoogle ScholarPubMed
54.Purpura, DP. Ectopic dendritic growth in mature pyramidal neu rones in human ganglioside storage disease. Nature 1978; 276: 520521.CrossRefGoogle Scholar
55.Braak, H, Goebel, HH. Pigmentoarchitectonic pathology of the iso cortex in juvenile neuronal ceroid–lipofuscinosis: axonal enlargements in layer II ab and cell loss in layer V. Acta Neuropathol (Beri) 1979; 46: 7983.CrossRefGoogle Scholar
56.Williams, RS, Ferrante, RJ, Caviness, VS Jr.The isolated human cortex. A Golgi analysis of Krabbe’s disease. Arch Neurol 1979; 36: 134139.CrossRefGoogle ScholarPubMed
57.Ferrer, I, Arbizu, T, Peña, J, et al. A Golgi and ultrastructural study of dominant form of Kufs’ disease. J Neurol 1980; 222: 183190.CrossRefGoogle ScholarPubMed
58.Goldman, F, Katz, D, Rapin, I, et al. Chronic GMI gangliosidosis presenting as dystonia: 1. Clinical and pathological features. Ann Neurol 1981;9:465475.CrossRefGoogle Scholar
59.Paula-Barbosa, MM, Tavares, MA, Silva, CA, et al. Axo-dendritic abnormalities in a case of juvenile neuronal disease. J Submicrosc Cytol 1981; 13:657665.Google Scholar
60.Paula-Barbosa, MM, Tavares, MA, Lavandeira, MT. Axonal enlargements (meganeurites) in neuronal ceroid lipofuscinosis (NCL). Ultrastruct Pathol 1982; 3: 237242.CrossRefGoogle ScholarPubMed
61.Braak, H, Braak, E, Goebel, HH. Isocortical pathology in type C Niemann-Pick disease: a combined Golgi pigmentoarchitectonic study. J Neuropathol Exp Neurol 1983; 42: 671687.CrossRefGoogle ScholarPubMed
62.Takashima, S, Becker, LE, Chan, F, et al. Golgi and computer mor phometric analysis of cortical dendrites in metabolic storage disease. Exp Neurol 1985; 88: 652672.CrossRefGoogle Scholar
63.Jagadha, V, Halliday, WC, Becker, LE. The association in two sib lings of infantile osteopetrosis and neuronal storage disease. J Neuropathol Exp Neurol 1986; 45: 366 (abstract).CrossRefGoogle Scholar
64.Becker, LE, Takashima, S. Dendritic structure in the leucodystro phies: a Golgi analysis of metachromatic leucodystrophy, adrenoleucodystrophy, Cockayne’s disease, and Pelizaeus-Merzbacher disease. International Symposium on the Leucodystrophy and Allied Diseases, Kyoto, September 19–20, 1981; 3752.Google Scholar
65.Fujisawa, K, Nakamura, A. The human Purkinje cells: a Golgi study in pathology. Acta Neuropathologica (Beri) 1982; 56: 255264.CrossRefGoogle Scholar
66.Horoupian, DS. ‘Dystrophic’ Purkinje cells in an infant. Acta Neuropathol (Beri) 1982; 57: 165170.CrossRefGoogle ScholarPubMed
67.Menkes, JH, Alter, M, Steigleder, GK, et al. A sex-linked recessive disorder with retardation of growth, peculiar hair, and focal cerebral and cerebellar degeneration. Pediatrics 1962; 29: 764779.Google ScholarPubMed
68.Aguilar, MJ, Chadwick, DL, Okuyama, K, et al. Kinky hair disease. I. Clinical and pathological features. J Neuropathol Exp Neurol 1966; 25: 507522..CrossRefGoogle ScholarPubMed
69.Ghatak, NR, Hirano, A, Poon, TP, et al. Trichopoliodystrophy II Pathological changes in skeletal muscle and nervous system. Arch Neurol 1972; 26:6072.CrossRefGoogle ScholarPubMed
70.Purpura, DP, Hirano, A, French, JH. Polydendritic Purkinje cells in X-chromosome linked copper malabsorption: a Golgi study. Brain Res 1976; 117: 125129.CrossRefGoogle ScholarPubMed
71.Hirano, A, Llena, JF, French, JH, et al. Fine structure of the cerebel lar cortex in Menkes kinky-hair disease (X-chromosome–linked copper malabsorption). Arch Neurol 1977 34: 5256.CrossRefGoogle Scholar
72.Williams, RS, Marshall, PC, Lo», IT, et al. The cellular pathology of Menkes steely hair syndrome. Neurology 1978; 28: 575583.CrossRefGoogle ScholarPubMed
73.Zecevic, N, Rakic, P. Differentiation of Purkinje cells and their relationship to other components of developing cerebellar cortex in man. J Comp Neurol 1976; 167: 2748.CrossRefGoogle ScholarPubMed
74.Bauman, ML, Kemper, TL. Curtailed histoanatomic development of the brain in phenylketonuria. J Neuropathol Exp Neurol 1974; 33: 181 (abstract).Google Scholar
75.Bauman, ML, Kemper, TL. Morphologic and histoanatomic obser vations of the brain in untreated human phenylketonuria. Acta Neuropathol 1982; 58: 5563.CrossRefGoogle Scholar
76.Richman, DP, Stewart, RM, Caviness, VS Jr.Cerebral microgyria in a 27-week fetus: an architectonic and topographic analysis. J Neuropathol Exp Neurol 1974; 33: 374384.CrossRefGoogle Scholar
77.Stewart, RM, Richman, DP, Caviness, VS Jr.Lissencephaly and pachygyria: an architectonic and topographical analysis. Acta Neuropathol 1975; 31: 112.CrossRefGoogle ScholarPubMed
78.Williams, RS, Ferrante, RJ, Caviness, VS Jr.Neocortical organiza tion in human cerebral malformations. A Golgi study. Neurosci Abstr 1975; 1: 776.Google Scholar
79.Kristt, DA. Impaired neuronal migration in cytomegalic inclusion disease: a Golgi analysis. J Neuropathol Exp Neurol 1976; 35: 369 (abstract).CrossRefGoogle Scholar
80.Williams, RS, Ferrante, RJ, Caviness, VS Jr.The cellular pathology of microgyria. A Golgi analysis. Acta Neuropathol (Beri) 1976; 36: 269283.CrossRefGoogle ScholarPubMed
81.Ferrer, I, Fernandez-Alvarez, E. Lisencefalia: Agiría. Un estudio con el metodo de Golgi. J Neurol Sci 1977; 34: 109120.CrossRefGoogle ScholarPubMed
82.Caviness, VS Jr, Williams, RS. Cellular pathology of developing human cortex. In: Katzman, R, ed. Congenital and Acquired Cognitive Disorders. New York: Raven Press 1979; 6989.Google Scholar
83.Huttenlocher, PR, Wollman RL: The fine structure of cerebral cor tex in tuberous sclerosis: a Golgi study. Ann Neurol 1980: 8: 223 (abstract).Google Scholar
84.Della Giustina, E, Goffinet, AM, Landrieu, P, et al. A Golgi study of the brain malformation in Zellweger’s cerebro-hepato-renal disease. Acta Neuropathol 1981; 55: 2328.CrossRefGoogle ScholarPubMed
85.Robain, O, Deonna, T. Pachygyria and congenital nephrosis disor der of migration and neuronal orientation. Acta Neuropathol 1983; 60: 137141.CrossRefGoogle Scholar
86.Ferrer, I, Fabregues, I, Coll, J, et al. Tuberous sclerosis: a Golgi study of cortical tuber. Clin Neuropathol 1984; 3: 4751.Google ScholarPubMed
87.Ferrer, I. A Golgi analysis of unlayered polymicrogyria. Acta Neuropathol (Beri) 1984; 65: 6976.CrossRefGoogle ScholarPubMed
88.Huttenlocher, PR, Heydemann, PT. Fine structure of cortical tubers in tuberous sclerosis: a Golgi study. Ann Neurol 1984; 16: 595602CrossRefGoogle ScholarPubMed
89.Machado-Salas, JP. Abnormal dendritic patterns and aberrant spine development in Bourneville’s disease - a Golgi survey. Clin Neuropathol 1984; 3: 5258.Google ScholarPubMed
90.Paula-Barbosa, MM, Tavares, MA, Saraiva, AA. Dendritic abnor malities in patients with subacute sclerosing panencephalitis (SSPE). A Golgi study. Acta Neuropathol (Beri) 1980; 52: 7780.CrossRefGoogle Scholar
91.Paula-Barbosa, MM, Ruela, C, Faria, R, et al. Cerebral cortex den dritic degeneration in subacute sclerosing panencephalitis (SSPE). Neurology 1980; 30: 711.CrossRefGoogle Scholar
92.Budka, H, Lassmann, H, Popow-Kraupp, Th. Measles virus antigen in panencephalitis. An immunomorphological study stressing dendritic involvement in SSPE. Acta Neuropathol (Bed) 1982; 56: 5262.CrossRefGoogle ScholarPubMed
93.Scheibel, ME, Scheibel, AB. Hippocampal pathology in temporal lobe epilepsy. A Golgi survey. In: Brazier, MAB, ed. Epilepsy. Its Phenomena in Man. UCLA Forum Med Sci, No. 17. New York: Academic Press 1973; 311337.CrossRefGoogle Scholar
94.Scheibel, ME, Crandall, PH, Scheibel, AB. The hippocampal-den tate complex in temporal lobe epilepsy. A Golgi study. Epilepsia 1974; 15: 5580.CrossRefGoogle Scholar
95.Vaquero, J, Oya, S, Cabezudo, JM, et al. Morphological study of human epileptic dendrites. Neurosurg 1982; 10: 720724.CrossRefGoogle ScholarPubMed
96.Ferrer, I, Ribalta, T, Digon, E, et al. Cerebral ganglioglioma. A Golgi study. Virchows Arch (Pathol Anat) 1983; 400: 6975.CrossRefGoogle ScholarPubMed
97.Ferrer, I, Isamat, F, Acebes, J. A Golgi and electron microscopie study of dysplastic gangliocytoma of the cerebellum. Acta Neuropathol (Beri) 1979; 47: 163165.CrossRefGoogle Scholar
98.Ambler, M, Pogacar, S, Sidman, R. Lhermitte-Duclos disease (granule cell hypertrophy of the cerebellum). Pathological analysis of the first familial cases. J Neuropathol Exp Neurol 1969; 28: 622647.CrossRefGoogle ScholarPubMed
99.Quattrochi, JJ, Baba, N, Liss, L, et al. Sudden infant death syn drome (SIDS): a preliminary study of reticular dendritic spines in infants with SIDS. Brain Res 1980; 181: 245249.CrossRefGoogle Scholar
100.Takashima, S, Becker, LE. Prenatal and postnatal maturation of medullary ‘respiratory centers’. Dev Brain Res 1986; 26: 173177.CrossRefGoogle Scholar
101.Scheibel, ME, Lindsay, RD, Tomiyasu, U, et al. Progressive den dritic changes in aging human cortex. Exp Neurol 1975; 47: 392403.CrossRefGoogle Scholar
102.Mehraein, P, Yamada, M, Tarnowska-Dziduszko, E. Quantitative study on dendrites and dendritic spines in Alzheimer’s disease and senile dementia. Adv Neurol 1975; 12: 453458.Google Scholar
103.Scheibel, ME, Scheibel, AB. Structural changes in the aging brain. In: Brody, H, Harmon, D, Ordy, JM, eds. Aging, vol I. New York: Raven Press 1975; 437.Google Scholar
104.Scheibel, ME, Lindsay, RD, Tomiyasu, U, et al. Progressive den dritic changes in the aging human limbic system. Exp Neurol 1976; 53:420430.CrossRefGoogle Scholar
105.Scheibel, ME, Tomiyasu, U, Scheibel, AB. The aging human Betz cell. Exp Neurol 1977; 56: 598609.CrossRefGoogle ScholarPubMed
106.Scheibel, AB, Tomiyasu, U. Dendritic sprouting in Alzheimer’s presenile dementia. Exp Neurol 1978; 60: 18.CrossRefGoogle ScholarPubMed
107.Buell, SJ, Coleman, PD. Dendritic growth in the aged human brain and failure to grow in senile dementia. Science 1979; 206: 854856.CrossRefGoogle Scholar
108.Buell, SJ, Coleman, PD. Quantitative evidence for selective den dritic growth in normal aging but not in senile dementia. Brain Res 1981; 214: 2341.CrossRefGoogle Scholar
109.Ferrer, I, Aymami, A, Rovira, A, et al. Growth of abnormal neurites in atypical Alzheimer’s disease. A study with the Golgi method. Acta Neuropathol (Bed) 1983; 59: 167170.CrossRefGoogle ScholarPubMed
110.Probst, A, Basler, V, Bron, B, et al. Neuritic plaques in senile dementia of Alzheimer type: a Golgi analysis in the hippocampal region. Brain Res 1983; 268: 249254.CrossRefGoogle ScholarPubMed
111.Nakamura, S, Akiguchi, I, Kameyama, M, et al. Age-related changes of pyramidal cell basal dendrites in layers III and V of human motor cortex: a quantitative Golgi study. Acta Neuropathol (Beri) 1985; 65: 281284.CrossRefGoogle ScholarPubMed
112.Wechsler, AF, Verity, MA, Rosenschein, S, et al. Pick’s disease. A clinical, computed tomographic, and histologic study with Golgi impregnation observations. Arch Neurol 1982; 39: 287290.CrossRefGoogle ScholarPubMed
113.Catalá, I, Ferrer, I, Galofré, E, Fábregues, I. Decreased numbers of dendritic spines on cortical pyramidal neurons in dementia: A quantitative Golgi study on biopsy samples. Hum Neurobiol 1988; 6: 255259.Google Scholar
114.Graveland, GA, Williams, RS, DiFiglia, M. Evidence for degenera tive and regenerative changes in neostriatal spiny neurons in Huntington’s disease. Science 1985; 227: 770773.CrossRefGoogle Scholar
115.Kato, T, Hirano, A, Donnenfeld, H. A Golgi study of the large ante rior horn cells of the lumbar cords in normal spinal cords and in amyotrophic lateral sclerosis. Acta Neuropathol (Bed) 1987; 75: 3440.CrossRefGoogle Scholar
116.Ferrer, I, Sirvent, J, Manresa, JM, Galofré, E, Fernández-Alvarez, E, Pineda, M. Primary degeneration of the granular layer of the cerebellum (Norman type): A Golgi study. Acta Neuropathol (Bed) 1987; 75: 203208.CrossRefGoogle ScholarPubMed
117.Flood, DG, Buell, SJ, DeFiore, CH, Horwitz, GJ, Coleman, PD. Age related dendritic growth in dentate gyrus of human brain is followed by regression in the Oldest old’. Brain Res 1985; 345: 366368.CrossRefGoogle ScholarPubMed
118.Flood, DG, Buell, SJ, Horwitz, GJ, Coleman, PD. Dendritic extent in human dentate gyrus granule cells in normal aging and senile dementia. Brain Res 1987; 402: 205216.CrossRefGoogle ScholarPubMed
119.Flood, DG, Guarnaccia, M, Coleman, PD. Dendritic extent in human CA2_3 hippocampal pyramidal neurons in normal aging and senile dementia. Brain Res 1987; 409: 8896.CrossRefGoogle ScholarPubMed
120.Arendt, T, Zvegintseva, HG, Leontovich, TA. Dendritic changes in the basal nucleus of Meynert and in the diagonal band nucleus in Alzheimer’s disease — A quantitative Golgi investigation. Neurosci 1986; 19: 12651278.CrossRefGoogle ScholarPubMed
121.de Ruiter, JP, Uylings, HBM. Morphometric and dendritic analysis of fascia dentata granule cells in human aging and senile dementia. Brain Res 1987; 402: 217229.CrossRefGoogle ScholarPubMed
122.Jagadha, V, Becker, LE. Brain morphology in Duchenne muscular dystrophy. Proceedings of the Annual Meeting of the Canadian Association of Neuropathologists, Gull Harbour Manitoba, September 1986.Google Scholar
123.Blackstad, TW. Electron microscopy of Golgi preparations for the study of neuronal relations. In: Nauta, WJH, Ebbesson, SOE, eds. Contemporary Research Methods in Neuroanatomy. New York: Springer Verlag 1970; 186216.CrossRefGoogle Scholar
124.Fairén, A, Peters, A, Saldanha, J. A new procedure for examining Golgi impregnated neurons by light and electron microscopy. J Neurocytol 1977; 6:311337.CrossRefGoogle ScholarPubMed
125.Wouterlood, FG. Light microscopic identification and photogra phy of Golgi impregnated central nervous system neurons during sectioning for electron microscopy. Stain Technol 1979; 54: 325329.CrossRefGoogle Scholar
126.Franzini-Armstrong, C, Peachey, LD. A modified Golgi black reaction method for light and electron microscopy. J Histochem Cytochem 1982; 30: 99105.CrossRefGoogle ScholarPubMed
127.Somogyi, P, Freund, TF, Kisvárday, ZF. Different types of 3H GABA accumulating neurons in the visual cortex of the rat. Characterization by combined autoradiography and Golgi impregnation. Exp Brain Res 1984; 54: 4556.CrossRefGoogle ScholarPubMed