Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T21:32:24.351Z Has data issue: false hasContentIssue false

Decrease in the Rate of Protein Synthesis by Polysomes from Cultured Fibroblasts of Patients and Carriers with Duchenne Muscular Dystrophy

Published online by Cambridge University Press:  18 September 2015

M. Boulé
Affiliation:
Département de Biochimie, Université de Montréal et Section de Neurologie, Hôpital Sainte-Justine Montréal, Québec, Canada
M. Vanasse
Affiliation:
Département de Biochimie, Université de Montréal et Section de Neurologie, Hôpital Sainte-Justine Montréal, Québec, Canada
L. Brakier-Gingras*
Affiliation:
Département de Biochimie, Université de Montréal et Section de Neurologie, Hôpital Sainte-Justine Montréal, Québec, Canada
*
Département de Biochimie, Université de Montréal, H3C 3J7, Montréal, Québec, Canada
Rights & Permissions [Opens in a new window]

Summary:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Polysomes extracted from cultured fibroblast cells isolated from patients with Duchenne muscular dystrophy (DMD), carriers of the disease, and normal controls were used for in vitro measurement of protein synthesis in a wheat germ extract system. It was observed that polysomes from patients and carriers (seven of each aged 17 years or older) exhibited a 3-fold and a 1.5-fold decrease in the rate of protein synthesis, respectively, as compared with controls. These results are discussed with a view to developing a sensitive and easily available assay for the detection of DMD carriers.

Type
Research Article
Copyright
Copyright © Canadian Neurological Sciences Federation 1979

References

Batelle, B.A. and Florini, J.R. (1973). Protein synthesis in chicken muscular dystrophy. Biochemistry, 12, 635643.CrossRefGoogle Scholar
Bester, A.J. and Gevers, W. (1973). Cell-free protein synthesis in heart and skeletal muscles from polymyopathic hamsters. Bio-chem. J. 132, 193201.Google ScholarPubMed
Dubowitz, V. (1975). Carrier detection and genetic counseling in Duchenne dystrophy. Dev. Med. Child. Neur. 17, 352356.CrossRefGoogle ScholarPubMed
Ionasescu, V., Zellweger, H. and Conway, T.W. (1971). A new approach for carrier detection in Duchenne muscular dystrophy. Protein synthesis of muscle polyribosomes in vitro. Neurology, 21, 703709.CrossRefGoogle ScholarPubMed
Ionasescu, V.Zellweger, H.Shirk, P. and Conway, T.W. (1973). Identification of carriers of Duchenne muscular dystrophy by muscle protein synthesis. Neurology, 23, 497502.CrossRefGoogle ScholarPubMed
Ionasescu, V. (1975). Distinction between Duchenne and other muscular dystrophies by ribosomal protein synthesis, J. Med. Genet. 12, 4954.CrossRefGoogle ScholarPubMed
Ionasescu, V., Zellweger, H. and Burmeister, L. (1976). Detection of carriers and genetic counseling in Duchenne muscular dystrophy by ribosomal protein synthesis. Acta Neurol. Scand. 54, 442452.CrossRefGoogle ScholarPubMed
Lane, R.J.M., Maskrey, P., Nicholson, G.A., Siddiqui, P.Q.R., Takahashi, K., Nicholson, M., Gascoigne, P., Pennington, R.J.T., Gardner-Medwin, D. and Walton, J.N. (1978). An evaluation of some carrier detection techniques in Duchenne muscular dystrophy. Abstract 488, IVth. International Congress on Neuromuscular Diseases.Google Scholar
Lengyel, P. (1974). The process of translation: a bird’s eye view, in Ribosomes, Nomura, M., Tissières, A. and Lengyel, P., eds., pp 1352, Cold Spring Harbor Laboratory.Google Scholar
Marcu, K. and Dudock, B. (1974). Characterization of a highly efficient protein synthesizing system derived from commercial wheat germ. Nucleic Acids Res. 11, 13851397.CrossRefGoogle Scholar
Monckton, G. and Nihei, T. (1969). A correlation of histology and amino acid incorporation studies in Duchenne muscular dystrophy. Neurology, 19, 415418.CrossRefGoogle ScholarPubMed
Petryshyn, R. and Nicholls, D.M. (1976). Protein synthesis in dystrophic muscle; activity of the pH 5 supernatant fraction of muscle in dystrophic mice. Biochim. Biophys. Acta, 435, 391404.CrossRefGoogle Scholar
Roses, A.D., Roses, M.J., Miller, S.E., Hull, K.L. and Appel, S.H. (1976). Carrier detection in Duchenne muscular dystrophy. New Engl. J. Med. 294, 193198.CrossRefGoogle ScholarPubMed
Rowland, L.P. (1976). Pathogenesis of muscular dystrophies. Arch. Neurol. 33, 315321.CrossRefGoogle ScholarPubMed
Schreier, M.H. and Staehelin, T. (1973). Initiation of mammalian protein synthesis; the importance of ribosome and initiation factor quality for the efficiency of in vitro systems. J. Mol. Biol. 73, 329349.CrossRefGoogle ScholarPubMed
Seay, A.R., Ziter, F.A., Wu, L.H. and Wu, J.T. (1978). Serum creatine phosphokinase and pyruvate kinase in neuromuscular disorders and Duchenne dystrophy carriers. Neurology, 28, 10471050.CrossRefGoogle ScholarPubMed
Smith, I. and Thomson, W.H.S. (1977). Carrier detection in X-linked recessive (Duchenne) muscular dystrophy: pyruvate kinase isoenzymes and creatine phosphokinase in serum and blood cells. Clin. Chim. Acta 78, 439451.CrossRefGoogle ScholarPubMed
Solomons, C.C., Ringel, S.P., Nwuke, E.I. and Suga, H. (1977). Abnormal adenine metabolism of erythrocytes in Duchenne and myotonic muscular dys-trophy. Nature, 268, 5556.CrossRefGoogle Scholar
Tashiro, Y. and Yphantis, D.A. (1965). Molecular weights of hepatic ribosomes and their subunits. J. Mol. Biol. 11, 174186.CrossRefGoogle ScholarPubMed
Weinstock, I.M. and Markiewicz, L. (1974). Muscle protein synthesis during development of the normal and dystrophic chicken. Biochim. Biophys. Acta, 374, 197206.CrossRefGoogle ScholarPubMed