Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T02:42:38.744Z Has data issue: false hasContentIssue false

Consciousness and Cell Memory: A Dynamic Epigenetic Interrelationship

Published online by Cambridge University Press:  18 February 2016

Arthur J. Hudson*
Affiliation:
Department of Clinical Neurological Sciences, Faculty of Medicine, University of Western Ontario, London, Ontario, Canada
*
Dept. of Clinical Neurological Sciences, Faculty of Medicine, University of Western Ontario, 8 Doncaster Ave., London, Ontario, N6G 2A2, Canada
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

There have been great advances in the neurological sciences in recent years including some in the higher functions of the brain such as memory but one of the more critical of these with close ties to memory is consciousness which remains an enigma. Revolutionary developments in genetics during the last two decades, referred to as epigenetics, have provided opportunity for discovery. The chromatin in the cell nucleus consists mainly of DNA nucleotides and histone proteins and the DNA is dynamically and epigenetically altered by the local actions of enzymes and trans-acting factors on the adjacent histone amino acids. DNA is also directly activated or inhibited by methyl groups and by non-coding RNAs. Epigenetics is a determinant in long-term cell memory consolidation and, as recently demonstrated in animal and human studies and described here, these effects enable a rapid and extraordinarily complex cognitive matching of cell memory to experience during consciousness.

Type
Review Article
Copyright
Copyright © Canadian Neurological Sciences Federation 2011

References

1.Teasdale, G, Jennett, B. Assessment of coma and impaired consciousness. A practical scale. Lancet. 1974;2:81–4.CrossRefGoogle ScholarPubMed
2.Laureys, S, Owen, AD, Schiff, ND. Brain function in coma, vegetative state, and related disorders. Lancet Neurol. 2004;3(9):537–46.CrossRefGoogle ScholarPubMed
3.Posner, J.B, Saper, CB, Schiff, ND, Plum, F. Plum and Posner’s diagnosis of stupor and coma. 4th ed.UK: Oxford University Press; 2007. p. 368–9.Google Scholar
4.Rosenblum, WI, Greenberg, RP, Seelig, JM, Becker, DP. Midbrain lesions: frequent and significant prognostic feature in closed head injury. Neurosurgery. 1981;9(6):613–20.CrossRefGoogle ScholarPubMed
5.Coleman, MR, Rodd, JM, Davis, MH, et al.Do vegetative patients retain aspects of language comprehension? Evidence from fMRI. Brain. 2007;130(10):2494–507.CrossRefGoogle ScholarPubMed
6.Owen, AD, Coleman, MR, Boly, M, Davis, MH, Laureys, S, Pickard, JD. Detecting awareness in the vegetative state. Science. 2006; 313:1402.CrossRefGoogle ScholarPubMed
7.Owen, AD, Coleman, MR, Boly, M, Davis, MH, Laureys, S, Pickard, JD. Using functional magnetic resonance imaging to detect covert awareness in the vegetative state. Arch Neurol. 2007;64(8):1098–102.CrossRefGoogle ScholarPubMed
8.Giacino, JT, Ashwal, S, Childs, N, et al.The minimally conscious state. Definition and diagnostic criteria. Neurology. 2002;58:349–53.CrossRefGoogle ScholarPubMed
9.Schiff, ND, Rodriguez-Moreno, D, Kamal, A, et al.fMRI reveals large-scale network activation in minimally conscious patients. Neurology. 2005;64:514–23.CrossRefGoogle ScholarPubMed
10.Eccles, JC. How the self controls its brain. Berlin: Springer-Verlag; 1994. p. 180.Google Scholar
11.Sperry, RW. Mind-brain interaction: mentalism, yes; dualism, no. Neuroscience. 1980;5(2):195206.CrossRefGoogle Scholar
12.Hudson, AJ. The physiological basis and quantum versions of memory and consciousness. Lewiston: Edwin Mellen Press; 2006.Google Scholar
13.Hudson, AJ. Consciousness: physiological dependence on rapid memory access. Front Biosci. 2009;14:2779–800.CrossRefGoogle ScholarPubMed
14.Lindsley, DB, Bowden, JW, Magoun, HW. Effect upon the EEG of acute injury to the brain stem activating system. EEG Clin Neurophysiol. 1949;1:475–86.CrossRefGoogle Scholar
15.Ingvar, D, Sourander, P. Destruction of the reticular core of the brain stem. Arch Neurol. 1970;23:18.CrossRefGoogle ScholarPubMed
16.von Economo, C. Sleep as a problem of localization. J Nerv Ment Dis. 1930;71:249–59.CrossRefGoogle Scholar
17.Moruzzi, G, Magoun, HW. Brainstem reticular formation and activation of the EEG. EEG Clin Neurophysiol. 1949;1:455–73.CrossRefGoogle ScholarPubMed
18.Lindsley, DB, Schreiner, LH, Knowles, W, Magoun, HW. Behavioal and EEG changes following chronic brain stem lesions in the cat. EEG Clin Neurophysiol. 1950;2:483–98.CrossRefGoogle Scholar
19.Saper, CB, Scammell, TE, Lu, J. Hypothalamic regulation of sleep and circadian rhythms. Nature. 2005;437:1257–63.CrossRefGoogle ScholarPubMed
20.Jones, BE. Reticular formation: cytoarchitecture, transmitters, and projections. In: Paxinos, G, editor. The rat nervous system. 2nd ed.San Diego: Academic Press; 1995. p. 155–71.Google Scholar
21.Evans, BM. Sleep, consciousness and the spontaneous and evoked electrical activity of the brain. Is there a cortical integrating mechanism. Neurophysiol Clinique. 2003;33:110.CrossRefGoogle Scholar
22.Ringo, JL, Doty, RW, Demeter, S, Simard, PY. Time is of the essence: a conjecture that the hemispheric specialization arises from interhemispheric conduction delay. Cereb Cortex. 1994;4:331–43.CrossRefGoogle ScholarPubMed
23.Squire, LR, Stark, CEL, Clark, RE. The medial temporal lobe. Ann Rev Neurosci. 2004;27:279306.CrossRefGoogle ScholarPubMed
24.Takashima, A, Nieuwenhuis, ILC, Jensen, O, Talamini, LM, Rijpkema, M. Shift from hippocampal to neocortical centered retrieval network with consolidation. J Neurosci. 2009;29(32):10087–93.CrossRefGoogle ScholarPubMed
25.Levine, DN, Warach, J, Farah, M. Two visual systems in mental imagery: dissociation of “what” and “where” in imagery disorders due to bilateral posterior cerebral lesions. Neurology. 1985;35:1010–8.CrossRefGoogle Scholar
26.Friston, KJ, Buechel, C, Fink, GR, Morris, J, Rolls, E, Dolan, RJ. Psychophysiological and modulatory interactions in neuroimaging. Neuroscience. 1997;6(3):218–29.Google ScholarPubMed
27.Wagner, AD, Schacter, DL, Rotte, M, et al.Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. Science. 1998;281:1188–91.CrossRefGoogle ScholarPubMed
28.Brown, MW, Bashir, ZI. Evidence concerning how neurons of the perirhinal cortex may effect familiarity discrimination. Phil Trans R Biol Soc Lond B Biol Sci. 2002;357:1083–95.CrossRefGoogle ScholarPubMed
29.Massey, PV, Phythian, D, Narduzzo, K, Wharburton, EC, Brown, MW, Bashir, ZI. Learning-specific changes in long-term depression in adult perirhinal cortex. J Neurol Sci. 2008;28(30):7548–54.Google ScholarPubMed
30.Fire, A, Xu, S, Montgomery, MK, Kostas, SA, Driver, SE, Mello, CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–11.CrossRefGoogle ScholarPubMed
31.Hartzog, GA, Martens, JA. ncRNA transcription makes its mark. EMBO. 2009;28(12):1679–80.CrossRefGoogle ScholarPubMed
32.Wolffe, AP, Matzke, MA. Epigenetics: regulation through repression. Science. 1999;286:481–6.CrossRefGoogle ScholarPubMed
33.Keverne, EB, Curley, JP. Epigenetics, brain evolution, and behaviour. Front Neuroendocrinol. 2008;29:398412.CrossRefGoogle ScholarPubMed
34.King, RC, Stansfield, WD, Mulligan, PK. A Dictionary of Genetics. 7th ed.New York: Oxford University Press; 2006.Google Scholar
35.Olins, AL, Olins, DE. Spheroid chromatin units (v bodies). Science. 1974;183:330–2.CrossRefGoogle ScholarPubMed
36.Campos, EI, Reinberg, D. Histones: annotating chromatin. Ann Rev Genet. 2009;43:559–99.CrossRefGoogle ScholarPubMed
37.Cheung, P, Allis, CD, Sassone-Corsi, P. Signaling to chromatin through histone modifications. Cell. 2000;103:263–71.CrossRefGoogle ScholarPubMed
38.Cheung, P, Lau, P. Epigenetic regulation by histone methylation and histone variants. Molec Endocrinol. 2005;19(3):563–73.CrossRefGoogle ScholarPubMed
39.Keppler, BR, Archer, TK. Chromatin-modifying enzymes as therapeutic targets part 1. Expert Opin Ther Targets. 2008; 12(10):1301–12.CrossRefGoogle ScholarPubMed
40.Keppler, BR, Archer, TK. Chromatin-modifying enzymes as therapeutic targets part 2. Expert Opin Ther Targets. 2008; 12(11):1457–67.CrossRefGoogle ScholarPubMed
41.Shi, Y, Whetstine, JR. Dynamic regulation of histone lysine methylation by demethylases. Molec Cell. 2007;25(1):114.CrossRefGoogle ScholarPubMed
42.Berger, SL. The complex language of chromatin regulation during transcription. Nature. 2007;447:407–12.CrossRefGoogle ScholarPubMed
43.Gupta, S, Kim, SY, Arris, S, et al.Histone methylation regulates memory formation. J Neurosci. 2010;30:3589–99.CrossRefGoogle ScholarPubMed
44.Turner, BM. Epigenetic responses to environmental change and their evolutionary implications. Phil Trans R Soc B. 2009;364:3403–18.CrossRefGoogle ScholarPubMed
45.Petronis, A. Epigenetics as a unifying principle in the aetiology of complex traits and diseases. Nature. 2010;465:721–7.CrossRefGoogle ScholarPubMed
46.Dulac, C. Brain function and chromatin plasticity. Nature. 2010;465:728–35.CrossRefGoogle ScholarPubMed
47.Jones, PA, Takai, D. The role of DNA methylation in mammalian epigenetics. Science. 2001;293:1068–70.CrossRefGoogle ScholarPubMed
48.Miller, CA, Sweatt, JD. Covalent modification of DNA regulates memory formation. Neuron. 2007;53:857–69.CrossRefGoogle ScholarPubMed
49.Abel, T, Nguyen, PV, Barad, M, Deuel, TAS, Kandel, E, Bourtchouladze, R. Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell. 1997;88:615–26.CrossRefGoogle ScholarPubMed
50.Abel, T, Martin, KC, Bartsch, D, Kandel, ER. Memory suppressor genes: inhibitory constraints on the storage of long-term memory. Science. 1998;279:338–41.CrossRefGoogle ScholarPubMed
51.Kandel, E. The molecular biology of memory storage: a dialogue between genes and synapses. Science. 2001;294:1030–8.CrossRefGoogle ScholarPubMed
52.Roth, TL, Sweatt, JD. Regulation of chromatin structure in memory formation. Curr Opin Neurobiol. 2009;19:336–42.CrossRefGoogle ScholarPubMed
53.Miller, CA, Gavin, CF, White, JA, et al.Cortical DNA methylation maintains remote memory. Nature Neurosci. 2010;13(6):664–6.CrossRefGoogle ScholarPubMed
54.Kangaspeska, S, Stride, B, Métivier, R, et al.Transient cyclical methylation of promoter DNA. Nature. 2008;452:112–5.CrossRefGoogle ScholarPubMed
55.Métivier, R, Gallais, R, Tiffoche, C, et al.Cyclical DNA methylation of a transcriptionaly active promoter. Nature. 2008;452:4550.CrossRefGoogle Scholar
56.Ma, DK, Jang, M-H, Guo, JU, et al.Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science. 2009;323:1074–7.CrossRefGoogle ScholarPubMed
57.Lubin, FD, Roth, TL, Sweatt, JD. Epigenetic regulation of bdnf gene transcription in the consolidation of fear memory. J Neurosci. 2008;28(42):10576–86.CrossRefGoogle ScholarPubMed
58.Cragg, BG. The density of synapses and neurons in normal, mentally defective and aging human brains. Brain. 1975;98:8190.CrossRefGoogle Scholar
59.Frey, U, Morris, RG. Synaptic tagging and long-term potentiation. Nature. 1997;385:533–6.CrossRefGoogle ScholarPubMed
60.Bliss, TVP, Lømo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol (London). 1973;232:331–56.CrossRefGoogle ScholarPubMed
61.Frey, U, Morris, RG. Synaptic tagging: implications for late maintenance of hippocampal long-term potentiation. Trends Neurosci. 1998;5:181–8.CrossRefGoogle Scholar
62.Martin, KC, Kosik, KS. Synaptic tagging – who’s who? Nature Rev Neurosci. 2002;3:813–20.CrossRefGoogle ScholarPubMed
63.Bramham, CR, Wells, DG. Dendritic mRNA: transport, translation and function. Nature Rev Neurosci. 2007;8(10):77689.CrossRefGoogle ScholarPubMed
64.O’Keefe, J, Dostrovsky, J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the free-moving rat. Brain Res. 1971;34:171–5.CrossRefGoogle Scholar
65.Moser, EI, Kropff, E, Moser, M-B. Place cells, grid cells, and the brain’s spatial representation system. Annu Rev Neurosci. 2008;31:6989.CrossRefGoogle ScholarPubMed
66.Harvey, CD, Coliman, F, Dombeck, DA, Tank, DW. Intracellular dynamics of hippocampal place cells during virtual navigation. Nature. 2009;461:941–6.CrossRefGoogle ScholarPubMed
67.Isaac, JTR, Buchanan, KA, Muller, RU, Mellor, JR. Hippocampal place cell firings can induce long-term synaptic plasticity in vitro. J Neurosci. 2009;29:6840–50.CrossRefGoogle ScholarPubMed
68.Hafting, T, Fyhn, M, Molden, S, Moser, M-B, Moser, EI. Microstructure of a spatial map in the entorhinal cortex. Nature. 2005;436:801–6.CrossRefGoogle ScholarPubMed
69.Barry, C, Hayman, R, Burgess, N, Jeffery, KJ. Experience-dependent rescaling of entorhinal grids. Nature Neurosci. 2007;10(6):682–4.CrossRefGoogle ScholarPubMed
70.van Hoesen, GW. The parahippocampal gyrus. New observations regarding its cortical connections in the monkey. Trends Neurosci. 1982;5:345–50.CrossRefGoogle Scholar
71.Sakai, K, Miyashita, Y. Visual imagery: an interaction between memory retrieval and focal attention. Trends Neurosci. 1994;17:287–9.CrossRefGoogle ScholarPubMed
72.Koechlin, E, Hyafil, A. Anterior prefrontal function and the limits of human decision-making. Science. 2007;318:594–8.CrossRefGoogle ScholarPubMed
73.Altamura, M, Goldberg, TE, Elvevâg, B, et al.Prefrontal cortex modulation during anticipation of working memory demands as revealed by magnetoencephalography. Int J Biomed Imaging. 2010;pii: 840416. Epub 2010 Jun 28.CrossRefGoogle ScholarPubMed
74.Averbeck, BB, Lee, D. Prefrontal neural correlates of memory for sequences. J Neurosci. 2007;27(9):2204–11.CrossRefGoogle ScholarPubMed
75.Edin, F, Klingberg, T,Johansson, P, McNab, F, Tegnér, J, Compte, B. Mechanism for top-down control of working memory capacity. Proc Natl Acad Sc USA. 2009;106(16):6802–7.CrossRefGoogle ScholarPubMed
76.Damasio, AR. The somatic marker hypothesis and the possible functions of the prefrontal cortex. Phil Trans R Soc Lond B. 1996;351:1413–20.Google ScholarPubMed
77.Hare, TA, O’Doherty, J, Camerer, CF, Schultz, W, Rangel, A. Dissociating the role of the orbitofrontal cortex and striatum in computation of goal values and prediction errors. J Neurosci. 2008;28(22):5623–30.CrossRefGoogle ScholarPubMed
78.Uylings, HBM, Groenewegen, HJ, Kolb, B. Do rats have a prefrontal cortex? Behav Brain Res. 2003;146:317.CrossRefGoogle ScholarPubMed
79.Passingham, RE. The frontal cortex: does size matter? Nature Neurosci. 2002;5:190–2.CrossRefGoogle ScholarPubMed
80.Royal College of Physicians. The vegetative state: guidance on diagnosis and management. Clin Med. 2003;3:249–54.CrossRefGoogle Scholar
81.Laureys, S. Science and society: death, unconsciousness and the brain. Nature Rev Neurosci. 2005;6:899909.CrossRefGoogle ScholarPubMed
82.Schmitt, FO, Dev, P, Smith, BH. Electronic processing of information by brain cells. Science. 1976;193:114–20.CrossRefGoogle Scholar
83.LeDoux, JE. The self: clues from the brain. Ann New York Acad Sci. 2003;1001:295304.CrossRefGoogle ScholarPubMed
84.LeDoux, JE. Synaptic self. How our brains become who we are. New York: Viking; 2002.Google Scholar