Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-01T21:03:33.834Z Has data issue: false hasContentIssue false

Amino Acid Changes in Thiamine-Deficient Encephalopathy: Some Implications for the Pathogenesis of Friedreich's Ataxia

Published online by Cambridge University Press:  18 September 2015

R.F. Butterworth
Affiliation:
The Clinical Research Institute of Montreal
E. Hamel
Affiliation:
The Clinical Research Institute of Montreal
F. Landreville
Affiliation:
The Clinical Research Institute of Montreal
A. Barbeau
Affiliation:
The Clinical Research Institute of Montreal
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Thiamine-deficient encephalopathy in the rat is characterized by ataxie gait, loss of righting reflex and curvature of the spine. N euro chemie ai changes include a diminished activity of cerebral pyruvate decarboxylase leading to abnormal pyruvate oxidation. The present study shows that this defective pyruvate oxidation produces a significant depletion of three important amino acid neurotransmitters, namely gamma aminobuiyrie acid (GABA), glutamic acid, andaspartic acid. Such changes could lead to severe neuronal dysfunction and the observed neurological symptoms of thiamine deficiency. Some implications for the pathogenesis of Friedreich's ataxia are discussed.

Type
Research Article
Copyright
Copyright © Canadian Neurological Sciences Federation 1979

References

Barbeau, A., Butterworth, R. F., Ngo, T. T., Breton, G., Melancon, S., Shapcott, D., Geoffroy, G. and Lemieux, B. (1976). Pyruvate metabolism in Friedreich's ataxia. Can. J. Neurol. Sci. 3 (4): 379389.CrossRefGoogle ScholarPubMed
Blass, J. P., Avigan, J. and Uhlen-Dorf, B. W. (1971). A defect in pyruvate decarboxylase in a child with an intermittent movement disorder. J. Clin. Invest. 49: 423432.Google Scholar
Blass, J. P., Kark, P. and Menon, N. K. (1976). Low activities of the pyruvate and oxoglutarate dehydrogenase complexes in five patients with Friedreich's ataxia. N. Eng. J. Med. 295: 6267.Google ScholarPubMed
Devivo, D. C., Leckie, M. P. and Agrawal, H. C. (1975). D-Ø-hydroxy-butyrate: a major precursor of amino acids in developing rat brain. J. Neurochem. 25: 161170.Google Scholar
Dreyfus, P. M. and Hauser, G. (1965). The effect of thiamine deficiency on the pyruvate decarboxylase system of the central nervous system. Biochim. Biophys. Acta 104: 7884.Google ScholarPubMed
Filla, A., Butterworth, R. F., Geoffroy, G., Lemieux, B. and Barbeau, A. (1978). Serum and platelet lipoamide dehydrogenase in Friedreich's ataxia. Can. J. Neurol. Sci. 5(1): 111114.Google ScholarPubMed
Gubler, C. J. (1961). Studies on the physiological functions of thiamine. J. Biol. Chem. 236(12): 31123120.Google ScholarPubMed
Gubler, C. J., Adams, B. L., Hammond, B., En Chuan Yuan, , Guo, S. M. and Bennion, M. (1974). Effect of thiamine deprivation and thiamine antagonists on the level of 7-aminobutyric acid on 2-oxoglutarate metabolism in rat brain. J. Neurochem. 22: 831836.Google Scholar
Hollowach, J., Kauffman, F., Ikossi, M., Thomas, C. and McDougal, D. B. (1968). The effects of a thiamin antagonist, pyrithiamin, on levels of selected metabolic intermediates and on activities of thiamin-dependent enzymes in brain and liver. J. Neurochem. 15: 621631.Google Scholar
Iwata, H., Watanabe, K., Nishikawa, T. and Ohashi, M. (1968). Effects of d rugs on behavior, heart rate and catecholamine levels in thiamine-deficient rats. Eur. J. Pharm. 6: 8389.Google Scholar
Iwata, H. and Nishikawa, T. (1970). Insulin intolerance in thiamine-deficient rats. Letters to the Editor, J. Pharm. Pharmac. 22: 645646.CrossRefGoogle Scholar
Iwata, H., Baba, A., Baba, T. and Nishikawa, T. (1974). Glucose intolerance in thiamine-deficient rats. J. Pharm. Pharmac. 26: 707710.Google ScholarPubMed
Lemieux, B., Barbeau, A., BERONI Ade, V., Shapcott, D., Breton, G., Geoffroy, G. and Melancon, S. (1976). Amino acid metabolism in Friedreich's ataxia. Can. J. Neurol. Sci. 3(4): 373379.Google ScholarPubMed
Lonsdale, D., Faulkner, W. R., Price, J. W. and Smeby, R. R. (1969). Intermittent cerebellar ataxia associated with hyperalaninuria. Pediatrics 43(6): 10251034.Google ScholarPubMed
McCandless, D. W. and Schenker, S. (1968). Encephalopathy of thiamine deficiency: studies of intracerebral mechanisms. J. Clin. Invest. 47: 22682280.Google ScholarPubMed
Melancon, S. B., Potier, M., Daillaire, L., Geoffroy, G., Lemieux, B. and Barbeau, A. (1977). Serum lipoamide dehydrogenase in Friedreich's ataxia. Pediatr. Res. 11: 460.CrossRefGoogle Scholar
Melancon, S. B., Potier, M., Dallaire, L., Geoffroy, G., Grenier, B., Lemieux, B., Geoffroy, G. and Barbeau, A. (1978). Lipoamide dehydrogenase in Friedreich's ataxia fibroblasts. Can. J. Neurol. Sci. 5(1): 115119.Google ScholarPubMed
Mukherji, B., Turínsky, J. and Slo-Viter, H. A. (1971). Effects of perfusion without glucose on amino acids and glycogen of perfused rat brain. J. Neurochem. 18: 17831785.Google Scholar
Owen, O. E., Morgan, A. P., Kemp, H. G., Sullivan, J. M., Herrera, M. G. and Cahill, G. F. (1967). Brain metabolism during fasting. J. Clin. Invest. 46: 15891595.Google ScholarPubMed
Robinson, N. (1968). Chemical changes in the spinal cord in Friedreich's ataxia and motor neurone disease. J. Neurol. Neuro-surg. Psychiat. 31: 330333.Google ScholarPubMed
Shapcott, D., Melancon, S. B., Butterworth, R. F., Khoury, K., Collu, R., Breton, G., Geoffroy, G., Lemieux, B. and Barbeau, A. (1976). Glucose and insulin metabolism in Friedreich's ataxia. Can. J. Neurol. Sci. 3(4): 361365.Google ScholarPubMed
Stumpf, D. A. and Parks, J. K. (1978). Friedreich's ataxia: Normal pyruvate dehydrogenase complex activity in platelets. Ann. Neurol. 4: 366368.Google ScholarPubMed
Warnock, L. G. and Burkhalter, V. J. (1968). Evidence of malfunctioning blood brain barrier in experimental thiamine deficiency in rats. J. Nutr. 94: 256260.Google ScholarPubMed