Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-r9vz2 Total loading time: 0.264 Render date: 2021-07-27T16:40:35.360Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Nitroglycerin Is Not Associated with Improved Cerebral Perfusion in Acute Ischemic Stroke

Published online by Cambridge University Press:  17 August 2020

Mahesh Kate
Affiliation:
Division of Neurology, University of Alberta, Edmonton, Canada
Laura Gioia
Affiliation:
Division of Neurology, University of Alberta, Edmonton, Canada
Negar Asdaghi
Affiliation:
Department of Neurology, University of Miami, Miami, USA
Thomas Jeerakathil
Affiliation:
Division of Neurology, University of Alberta, Edmonton, Canada
Ashfaq Shuaib
Affiliation:
Division of Neurology, University of Alberta, Edmonton, Canada
Brian Buck
Affiliation:
Division of Neurology, University of Alberta, Edmonton, Canada
Derek Emery
Affiliation:
Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Canada
Christian Beaulieu
Affiliation:
Department of Biomedical Engineering, University of Alberta, Edmonton, Canada
Kenneth Butcher
Affiliation:
Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
Corresponding
E-mail address:

Abstract:

Objective:

The study was conducted to test the hypothesis that nitroglycerin (NTG) increases cerebral perfusion focally and globally in acute ischemic stroke patients, using serial perfusion-weighted imaging (PWI) magnetic resonance imaging measurements.

Patients and methods:

Thirty-five patients underwent PWI immediately before and 72 h after administration of a transdermal NTG patch or no treatment. Patients with baseline mean arterial pressure (MAP) > 100 mmHg (NTG group, n = 20) were treated with transdermal NTG (0.2 mg/h) for 72 h, without a nitrate-free interval. Patients with MAP ≤ 100 mmHg (untreated group, n = 15) were not treated. The primary outcome measure was absolute cerebral blood flow (CBF) in the hypoperfused region at 72 h.

Results:

The mean baseline absolute CBF in the hypoperfused region was similar in the NTG group (33.3 ± 10.2 ml/100 g/min) and untreated (32.7 ± 8.4 ml/100 g/min, p = 0.4) groups. The median (IQR) baseline infarct volume was 10.4 (2.5–49.3) ml in the NTG group and 32.6 (8.6–96.7) ml in the untreated group (p = 0.09). MAP change in the NTG group was 1.2 ± 12.6 and 8 ± 20.7 mmHg at 2 h and 72 h, respectively. Mean absolute CBF in the hypoperfused region at 72 h was similar in the NTG (29.9 ± 12 ml/100 g/min) and untreated groups (24.1 ± 10 ml/100 g/min, p = 0.8). The median infarct volume increased in untreated (11.8 (5.7–44.2) ml) than the NTG group (3.2 (0.5–16.5) ml; p = 0.033) on univariate analysis, however, there was no difference on regression analysis.

Conclusion:

NTG was not associated with improvement in cerebral perfusion in acute ischemic stroke patients.

Résumé :

RÉSUMÉ :

L’utilisation de nitroglycérine n’est pas associée à une perfusion cérébrale améliorée chez des patients victimes d’AVC ischémiques aigus.

Objectif :

Cette étude a été effectuée afin de tester l’hypothèse suivant laquelle la nitroglycérine (NG) permet d’augmenter tant de manière focale que générale la perfusion cérébrale chez des patients ayant été victimes d’un AVC ischémique aigu. Pour ce faire, nous avons fait appel à des mesures obtenues lors d’examens d’IRM sérielle pondérée pour la perfusion.

Patients et méthodes :

Au total, 35 patients ont subi un tel examen immédiatement avant de recevoir un timbre transdermique de NG, 72 heures après l’avoir reçu ou bien encore sans en avoir bénéficié. À noter que les patients dont la pression artérielle moyenne (PAM) de base dépassait les 100 mmHg (n = 20 pour le groupe NG) ont été traités au moyen d’un tel timbre (0,2 mg/h) pendant 72 heures sans qu’on ait fait de pause dans le traitement. C’est donc dire que les patients dont la PAM de base était égale ou inférieure à 100 mmHg n’ont pas reçu ce traitement (n = 15 pour ce groupe). Le principal résultat mesuré dans le cadre de cette étude a donc été la perfusion cérébrale absolue dans la région hypo-perfusée, et ce, au bout de 72 heures.

Résultats :

La PAM de base absolue dans la région hypo-perfusée du groupe NG (33,3 ± 10,2 ml/100 g/min) a été similaire à celle du groupe de patients non traités (32,7 ± 8,4 ml/100 g/min ; p = 0,4). Le volume médian (EI) des infarctus au départ était de 10,4 ml (2,5–49,3) dans le groupe NG et de 32,6 ml (8,6–96,7) dans le groupe de patients non traités (p = 0,09). Au bout de 2 heures et de 72 heures respectivement, les changements à la PAM de base ont été de 1,2 ± 12,6 mmHg et de 8 ± 20,7 mmHg pour le groupe NG. La perfusion cérébrale moyenne absolue dans la région hypo-perfusée au bout de 72 heures a été semblable d’un groupe à l’autre (NG = 29,9 ± 12 ml/100g/min ; patients non traités = 24,1 ± 10 ml/100g/min ; p = 0,8). À la suite d’une analyse univariée, on a certes noté que le volume médian d’infarctus avait augmenté davantage au sein du groupe de patients non traités (11,8 ml [5,7–44,2]) que du groupe NG (3,2 ml [0,5–16,5]) ; p = 0,033). Cela dit, une analyse de régression n’a en fin de compte montré aucune différence.

Conclusion :

L’administration de timbres de ND n’a donc pas été associée à une amélioration de la perfusion cérébrale chez des patients victimes d’un AVC ischémique aigu.

Type
Original Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Canadian Journal of Neurological Sciences Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Symon, L, Branston, NM, Strong, AJ. Autoregulation in acute focal ischemia: an experimental study. Stroke. 1976;7:547–54.CrossRefGoogle ScholarPubMed
Malhotra, K, Ahmed, N, Alexandrov, AV, et al. Association of elevated blood pressure levels with outcomes in acute ischemic stroke patients treated with intravenous thrombolysis: a systematic review and meta-analysis. J Stroke. 2019;21:7890.CrossRefGoogle ScholarPubMed
Mistry, EA, Mistry, AM, Nakawah, MO, et al. Systolic blood pressure within 24 hours after thrombectomy for acute Ischemic stroke correlates with outcome. J Am Heart Assoc. 2017;6(5):e006167.CrossRefGoogle ScholarPubMed
Regenhardt, RW, Das, AS, Stapleton, CJ, et al. Blood pressure and penumbral sustenance in stroke from large vessel occlusion. Front Neurol. 2017;8:317.CrossRefGoogle ScholarPubMed
The ENOS Trial Investigators. Efficacy of nitric oxide, with or without continuing antihypertensive treatment, for management of high blood pressure in acute stroke (ENOS): a partial-factorial randomised controlled trial. Lancet. 2014;6736:1216.Google Scholar
Willmot, M, Ghadami, A, Whysall, B, Clarke, W, Wardlaw, J, Bath, PMW. Transdermal glyceryl trinitrate lowers blood pressure and maintains cerebral blood flow in recent stroke. Hypertension. 2006;47:1209–15.CrossRefGoogle ScholarPubMed
Ankolekar, S, Fuller, M, Cross, I, et al. Feasibility of an ambulance-based stroke trial, and safety of glyceryl trinitrate in ultra-acute stroke: the rapid intervention with glyceryl trinitrate in Hypertensive Stroke Trial (RIGHT, ISRCTN66434824). Stroke. 2013;44:3120–28.CrossRefGoogle Scholar
Willmot, M, Gray, L, Gibson, C, Murphy, S, Bath, PMW. A systematic review of nitric oxide donors and l-arginine in experimental stroke: effects on infarct size and cerebral blood flow. Nitric Oxide. 2005;12:141–49.CrossRefGoogle ScholarPubMed
Maniskas, ME, Roberts, JM, Trueman, R, et al. Intra-arterial nitroglycerin as directed acute treatment in experimental ischemic stroke. J Neurointerv Surg. 2018;10:2933.CrossRefGoogle ScholarPubMed
Dahl, A, Russell, D, Nyberg-Hansen, R, Rootwelt, K. Effect of nitroglycerin on cerebral circulation measured by transcranial Doppler and SPECT. Stroke. 1989;20:1733–36.CrossRefGoogle ScholarPubMed
Moppett, IK, Sherman, RW, Wild, MJ, Latter, JA, Mahajan, RP. Effects of norepinephrine and glyceryl trinitrate on cerebral haemodynamics: Transcranial Doppler study in healthy volunteers. Br J Anaesth. 2008;100:240–44.CrossRefGoogle ScholarPubMed
Casaubon, LK, Boulanger, JM, Blacquiere, D, et al. Canadian stroke best practice recommendations: hyperacute stroke care guidelines, update 2015. Int J Stroke. 2015;10:924–40.CrossRefGoogle ScholarPubMed
Qureshi, AI. Acute hypertensive response in patients with stroke: pathophysiology and management. Circulation. 2008;118:176–87.CrossRefGoogle ScholarPubMed
Whalin, MK, Halenda, KM, Haussen, DC, et al. Even small decreases in blood pressure during conscious sedation affect clinical outcome after stroke thrombectomy: an analysis of hemodynamic thresholds. Am J Neuroradiol. 2016;38:294–98.CrossRefGoogle ScholarPubMed
Vemmos, KN, Tsivgoulis, G, Spengos, K, et al. U-shaped relationship between mortality and admission blood pressure in patients with acute stroke. J Intern Med. 2004;255:257–65.CrossRefGoogle ScholarPubMed
Bangalore, S, Schwamm, L, Smith, EE, et al. Blood pressure and in-hospital outcomes in patients presenting with ischaemic stroke. Eur Heart J. 2017;38:2827–35.CrossRefGoogle ScholarPubMed
Kate, M, Asdaghi, N, Gioia, LC, et al. Blood pressure reduction in hypertensive acute ischemic stroke patients does not affect cerebral blood flow. J Cereb Blood Flow Metab. 2019;39(9):1878–87CrossRefGoogle Scholar
Lindley, RI, Warlow, CP, Wardlaw, JM, Dennis, MS, Slattery, J, Sandercock, PA. Interobserver reliability of a clinical classification of acute cerebral infarction. Stroke. 1993;24:1801–4.Google ScholarPubMed
Robb, RA. The biomedical imaging resource at Mayo Clinic. IEEE Trans Med Imaging. 2001;20:854–67.CrossRefGoogle ScholarPubMed
Bivard, A, Spratt, N, Levi, C, Parsons, M. Perfusion computer tomography: imaging and clinical validation in acute ischaemic stroke. Brain. 2011;134:3408–16.CrossRefGoogle ScholarPubMed
Bivard, A, Levi, C, Spratt, N, Parsons, M. Perfusion CT in acute stroke: a comprehensive analysis of infarct and penumbra. Radiology. 2013;267:543–50.CrossRefGoogle ScholarPubMed
Murphy, BD, Fox, AJ, Lee, DH, et al. Identification of penumbra and infarct in acute ischemic stroke using computed tomography perfusion-derived blood flow and blood volume measurements. Stroke. 2006;37:1771–77.CrossRefGoogle ScholarPubMed
Schlaug, G, Benfield, A, Baird, AE, et al. The ischemic penumbra: operationally defined by diffusion and perfusion MRI. Neurology. 1999;53:1528–37.CrossRefGoogle ScholarPubMed
Butcher, KS, Parsons, M, MacGregor, L, et al. Refining the perfusion-diffusion mismatch hypothesis. Stroke. 2005;36:1153–59.CrossRefGoogle ScholarPubMed
De Havenon, , A, Bennett, A, Stoddard, GJ, et al. Determinants of the impact of blood pressure variability on neurological outcome after acute ischaemic stroke. Stroke Vasc Neurol. 2017;2:16.CrossRefGoogle ScholarPubMed
Manning, LS, Mistri, AK, Potter, J, Rothwell, PM, Robinson, TG. Short-term blood pressure variability in acute stroke: post hoc analysis of the controlling hypertension and hypotension immediately post stroke and continue or stop post-stroke antihypertensives collaborative study trials. Stroke. 2015;46:1518–24.CrossRefGoogle ScholarPubMed
Dirnagl, U, Pulsinelli, W. Autoregulation of cerebral blood flow in experimental focal brain ischemia. J Cereb Blood Flow Metab. 1990;10:327–36.CrossRefGoogle ScholarPubMed
He, J, Zhang, Y, Xu, T, et al. Effects of immediate blood pressure reduction on death and major disability in patients with acute ischemic stroke: the CATIS randomized clinical trial. JAMA. 2014;311:479–89.CrossRefGoogle ScholarPubMed
Hong, K-S. Blood pressure management for stroke prevention and in acute stroke. J Stroke. 2017;19:152–65.CrossRefGoogle ScholarPubMed
Bath, PM, Scutt, P, Anderson, CS, et al. Prehospital transdermal glyceryl trinitrate in patients with ultra-acute presumed stroke (RIGHT-2): an ambulance-based, randomised, sham-controlled, blinded, phase 3 trial. Lancet. 2019;6736:112.Google Scholar
Sandset, EC, Bath, PMW, Boysen, G, et al. The angiotensin-receptor blocker candesartan for treatment of acute stroke (SCAST): a randomised, placebo-controlled, double-blind trial. Lancet. 2011;377:741–50.CrossRefGoogle ScholarPubMed
Tryambake, D, He, J, Firbank, MJ, O’Brien, JT, Blamire, AM, Ford, GA. Intensive blood pressure lowering increases cerebral blood flow in older subjects with hypertension. Hypertension. 2013;61:1309–15.CrossRefGoogle ScholarPubMed
Lipsitz, LA, Gagnon, M, Vyas, M, et al. Antihypertensive therapy increases cerebral blood flow and carotid distensibility in hypertensive elderly subjects. Hypertension. 2005;45:216–21.CrossRefGoogle ScholarPubMed
Infeld, B, Davis, SM, Donnan, GA, et al. Nimodipine and perfusion changes after stroke. Stroke. 1999;30:1417–23.CrossRefGoogle ScholarPubMed
Hakim, AM, Evans, AC, Berger, L, et al. The effect of nimodipine on the evolution of human cerebral infarction studied by PET. J Cereb Blood Flow Metab. 1989;9:523–34.CrossRefGoogle ScholarPubMed
Sare, GM, Gray, LJ, Bath, PM. Effect of antihypertensive agents on cerebral blood flow and flow velocity in acute ischaemic stroke: systematic review of controlled studies. J Hypertens. 2008;26:1058–64.CrossRefGoogle ScholarPubMed
Münzel, T, Daiber, A, Mülsch, A. Explaining the phenomenon of nitrate tolerance. Circ Res. 2005;97:618–28.CrossRefGoogle ScholarPubMed
Sage, PR, de la, Lande, , IS, Stafford, I, et al. Nitroglycerin tolerance in human vessels: evidence for impaired nitroglycerin bioconversion. Circulation. 2000;102:2810–15.CrossRefGoogle ScholarPubMed
Christensen, S, Mlynash, M, Kemp, S, et al. Persistent target mismatch profile >24 hours after stroke onset in DEFUSE 3. Stroke. 2019;811.CrossRefGoogle Scholar
Woodhouse, L, Scutt, P, Krishnan, K, et al. Effect of hyperacute administration (within 6 hours) of transdermal glyceryl trinitrate, a nitric oxide donor, on outcome after stroke. Stroke. 2015;46:3194–201.CrossRefGoogle ScholarPubMed

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Nitroglycerin Is Not Associated with Improved Cerebral Perfusion in Acute Ischemic Stroke
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Nitroglycerin Is Not Associated with Improved Cerebral Perfusion in Acute Ischemic Stroke
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Nitroglycerin Is Not Associated with Improved Cerebral Perfusion in Acute Ischemic Stroke
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *