Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-22T01:01:04.905Z Has data issue: false hasContentIssue false

Valuation Rings and Rigid Elements in Fields

Published online by Cambridge University Press:  20 November 2018

Roger Ware*
Affiliation:
Pennsylvania State University, University Park, Pennsylvania
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In [20], T. A. Springer proved that if A is a complete discrete valuation ring with field of fractions F, residue class field of characteristic not 2, and uniformizing parameter π then any anisotropic quadratic form q over F has a unique decomposition as q = q1 ⊥ 〈π〉q2, where q1 and q2 represent only units of A, modulo squares in F (compare [14, Satz 12.2.2], [19, §4], [18, Theorem 8.9]). Consequently the binary quadratic form x2 + πy2 represents only elements in 2 ∪ π2, where 2 denotes the set of nonzero squares in F. Szymiczek [21] has called a nonzero element a in a field F rigid if the binary quadratic form x2 + ay2 represents only elements in 2aḞ2.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1981

References

1. Becker, E., Hereditarily Pythagorean fields and orderings of higher level, Monografias de Matematica 29 (IMPA, Rio de Janeiro, 1978).Google Scholar
2. Becker, E. and Köpping, E., Reduzierte quadratische Formen und Semiordnungen reeller Körper, Abh. Math. Sem. Univ. Hamburg 46 (1977), 143177.Google Scholar
3. Berman, L., Quadratic forms and power series fields, preprint.Google Scholar
4. Berman, L., Cordes, C. and Ware, R., Quadratic forms, rigid elements, and formal power series fields, J. Algebra 66 (1980), 123133.Google Scholar
5. Bröcker, L., Uber eine Klasse pythagoreischer Körper, Arch, der Math. 23 (1972), 405407.Google Scholar
6. Bröcker, L., Characterization of fans and hereditarily Pythagorean fields, Math. Zeit. 151 (1976), 149163.Google Scholar
7. Brown, R., Super Pythagorean fields, J. Algebra 42 (1976), 483494.Google Scholar
8. Cordes, C., The Witt group and the equivalence of fields with respect to quadratic forms, J. Algebra 26 (1973), 400421.Google Scholar
9. Diller, J. and Dress, A., Zur Galoistheorie pythagoreische Körper, Arch. Math. 16 (1965), 148152.Google Scholar
10. Dress, A., Metrische Ebenen uber quadratisch perfekten Körpern, Math. Zeit. 92 (1966), 1929.Google Scholar
11. Elman, R. and Lam, T. Y., Quadratic forms over formally real fields and Pythagorean fields, Amer. J. Math. 94 (1972), 11551194.Google Scholar
12. Jacob, B., On the structure of Pythagorean fields, preprint.Google Scholar
13. Jacob, B., Fans, real valuations, and hereditarily-pythagorean fields, preprint.Google Scholar
14. Knebusch, M., Grothendieck- und Witt ringe von nichtausgearteten symmetrischen Bilinearformen, Sitzber. Heidelberg. Akad. Wiss. Math-naturw. Kl. (1969/1970), 3Abh.Google Scholar
15. Knebusch, M., Rosenberg, A. and Ware, R., Signatures on semilocal rings, J. Algebra 26 (1973), 208250.Google Scholar
16. Milnor, J. and Husemoller, D., Symmetric bilinear forms, (Springer-Verlag, Berlin- Heidelberg-New York, 1973).Google Scholar
17. Pfister, A., Quadratische Formen in beliebigen Kôrpern, Invent. Math. 1 (1966), 116132.Google Scholar
18. Prestel, A., Lectures on formally real fields, Monografias de Matematica 22 (IMPA, Rio de Janeiro, 1975).Google Scholar
19. Scharlau, W., Quadratische Formen und Galois-Cohomologie, Invent. Math. 4 (1967), 238264.Google Scholar
20. Springer, T. A., Quadratic forms over fields with a discrete valuation, Indag. Math. 17 (1955), 352362.Google Scholar
21. Szymiczek, K., Quadratic forms over fields, Dissert. Math. Rozprawy Mat. 52 (1977).Google Scholar
22. Szczepanik, L., Quadratic forms over Springer fields, Colloquium Math. 40 (1978), 3137.Google Scholar
23. Ware, R., >When are Witt rings group rings? Pacific J. Math. 49 (1973), 279284. When+are+Witt+rings+group+rings?+Pacific+J.+Math.+49+(1973),+279–284.>Google Scholar
24. Ware, R., When are Witt rings group rings? II, Pacific J. Math. 76 (1978), 541564.Google Scholar
25. Ware, R., Quadratic forms and profinite 2-groups, J. Algebra 58 (1979), 227237.Google Scholar