Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-12T08:32:43.833Z Has data issue: false hasContentIssue false

Rings of Meromorphic Functions on Non-Compact Riemann Surfaces

Published online by Cambridge University Press:  20 November 2018

James Kelleher*
Affiliation:
Columbia University, New York, New York
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we shall be concerned with the algebraic structure of certain rings of functions meromorphic on a non-compact (connected) Riemann surface Ω. In this setting, A = A(Ω) and K= K(Ω) denote (respectively) the ring of all complex-valued functions analytic on Ω and its field of quotients, the field of functions meromorphic on Ω. The rings considered here are those subrings of K containing A,which we term A-rings of K. Most of the results given here were previously announced without proof (15) and are contained in the author's doctoral dissertation (16), completed at the University of Illinois under the direction of Professor M. Heins, whose encouragement and advice are gratefully acknowledged.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1969

References

1. Ahlfors, L. and Sario, L., Riemann surfaces (Princeton Univ. Press, Princeton, N.J., 1960).Google Scholar
2. Ailing, N. L., The valuation theory of meromorphic function fields over open Riemann surfaces, Acta Math. 110 (1960), 7996.Google Scholar
3. Banaschewski, B., Zur Idealtheorie der ganzen Funktionen, Math. Nachr. 19 (1958), 136160.Google Scholar
4. Bers, L., On rings of analytic functions, Bull. Amer. Math. Soc. 54 (1948), 311315.Google Scholar
5. Bourbaki, N., Eléments de mathématique, Fascicules XXVII, XXVIII, and XXX, Algèbre commutative, Actualités Sci. Indust., Nos. 1290, 1293, and 1308 (Hermann, Paris, 1961, 1961, and 1964).Google Scholar
6. Florack, H., Regulare und meromorphe Funktionen auf nicht geschlossen Riemannschen Flàchen, Schr. Math. Inst. Univ. Munster, no. 1, (1948), 34 pp.Google Scholar
7. Gilmer, R. and Ohm, J., Primary ideals and valuation ideals, Trans. Amer. Math. Soc. 117 (1965), 237250.Google Scholar
8. Heins, M., Selected topics in the classical theory of functions of a complex variable (Holt, Reinhart, and Winston, New York, 1962).Google Scholar
9. Heins, M., Algebraic structure and conformai mapping, Trans. Amer. Math. Soc. 89 (1958), 267276.Google Scholar
10. Helmer, O., Divisibility properties of integral functions, Duke Math. J. 6 (1940), 345356.Google Scholar
11. Henriksen, M., On the ideal structure of the ring of entire functions, Pacific J. Math. 2 (1952), 179184.Google Scholar
12. Henriksen, M., On the prime ideals of the ring of entire functions, Pacific J. Math. 3 (1953), 711720.Google Scholar
13. Iss'sa, H., On the meromorphic function field of a Stein variety, Ann. of Math. (2) 83 (1966), 3446.Google Scholar
14. Kakutani, S., Rings of analytic functions, Lectures on functions of a complex variable, pp. 7183 (Univ. Michigan Press, Ann Arbor, Michigan, 1955).Google Scholar
15. Kelleher, J., Rings of meromorphic functions, Bull. Amer. Math. Soc. 72 (1966), 5458.Google Scholar
16. Kelleher, J., Rings of meromorphic functions, Thesis, University of Illinois, Urbana, Illinois, 1965.Google Scholar
17. Nakai, M., On rings of analytic functions on Riemann surfaces, Proc. Japan. Acad. 39 (1963), 7984.Google Scholar
18. Royden, H., Rings of analytic and meromorphic functions, Trans. Amer. Math. Soc. 83 (1956), 269276.Google Scholar
19. Schilling, O. F. G., Ideal theory on open Riemann surfaces, Bull. Amer. Math. Soc. 52 (1946), 945963.Google Scholar
20. Zariski, O. and Samuel, P., Commutative algebra, The University Series in Higher Mathematics, Vols. I and II (Van Nostrand, New York, 1958, 1960).Google Scholar