Hostname: page-component-5c6d5d7d68-ckgrl Total loading time: 0 Render date: 2024-08-07T01:09:34.659Z Has data issue: false hasContentIssue false

Le problème de Neumann pour certaines équations du type de Monge-Ampère sur une variété riemannienne

Published online by Cambridge University Press:  20 November 2018

Abdellah Hanani*
Affiliation:
Université de Lille 1 UFR de Mathématiques 59655 Villeneuve d’Ascq FRANCE email: hanani@agat.univ-lille1.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $\left( {{M}_{n}},\,g \right)$ be a strictly convex riemannian manifold with ${{C}^{\infty }}$ boundary. We prove the existence of classical solution for the nonlinear elliptic partial differential equation of Monge-Ampère: $\det (-u\delta _{j}^{i}\,+\,\nabla _{j}^{i}u)\,=\,F(x,\,\nabla u;\,u)$ in $M$ with a Neumann condition on the boundary of the form $\frac{\partial u}{\partial v}=\varphi (x,u)$, where $F\in {{C}^{\infty }}(TM\times \mathbb{R})$ is an everywhere strictly positive function satisfying some assumptions, $v$ stands for the unit normal vector field and $\varphi \in {{C}^{\infty }}(\partial M\times \mathbb{R})$ is a non-decreasing function in $u$.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2000

References

Références

[1] Agmon, S., Douglis, A. and Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Comm. Pure Appl. Math. 12(1959), 623727.Google Scholar
[2] Calabi, E., Improper affine hyperspheres and a generalisation of a theorem of K. Jörgens. Michigan Math. J. 5(1958), 105126.Google Scholar
[3] Krylov, N. V., Boundedly unhomogenous elliptic and parabolic equations in a domain. Math. USSR-Izv. (1) 22(1984), 6797.Google Scholar
[4] Lions, P. L., Trudinger, N. S. and Urbas, J. I. E., The Neumann problem for equations of Monge-Ampère type. Comm. Pure Appl. Math. 39(1986), 539563.Google Scholar
[5] Pogorelov, A. V., TheMinkowski multidimensional Problem. Translated by V. Oliker.Winston and Sons, 1978.Google Scholar
[6] Ziemer, W. P., Mean values of subsolutions of elliptic and parabolic equations. Trans. Amer. Math. Soc. 279(1983), 555568.Google Scholar
[7] Urbas, J., Oblique boundary value problems for equations ofMonge-Ampère type. Calc. Var. Partial Differential Equations 7(1998), 1939.Google Scholar