We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send this article to your account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Given a finite group G with a normal subgroup N, the simple graph $\Gamma _{\textit {G}}( \textit {N} )$ is a graph whose vertices are of the form $|x^G|$, where $x\in {N\setminus {Z(G)}}$ and $x^G$ is the G-conjugacy class of N containing the element x. Two vertices $|x^G|$ and $|y^G|$ are adjacent if they are not coprime. We prove that, if $\Gamma _G(N)$ is a connected incomplete regular graph, then $N= P \times {A}$ where P is a p-group, for some prime p, $A\leq {Z(G)}$ and $\textbf {Z}(N)\not = N\cap \textbf {Z}(G)$.
Necklaces are the equivalence classes of words under the action of the cyclic group. Let a transition in a word be any change between two adjacent letters modulo the word’s length. We present a closed-form solution for the enumeration of necklaces in n beads, k colours and t transitions. We show that our result provides a more general solution to the problem of counting alternating (proper) colourings of the vertices of a regular n-gon.
Morgan and Parker proved that if G is a group with ${\textbf{Z}(G)} = 1$, then the connected components of the commuting graph of G have diameter at most $10$. Parker proved that if, in addition, G is solvable, then the commuting graph of G is disconnected if and only if G is a Frobenius group or a $2$-Frobenius group, and if the commuting graph of G is connected, then its diameter is at most $8$. We prove that the hypothesis $Z (G) = 1$ in these results can be replaced with $G' \cap {\textbf{Z}(G)} = 1$. We also prove that if G is solvable and $G/{\textbf{Z}(G)}$ is either a Frobenius group or a $2$-Frobenius group, then the commuting graph of G is disconnected.
A subgroup H of a group G is pronormal in G if each of its conjugates $H^g$ in G is conjugate to it in the subgroup $\langle H,H^g\rangle $; a group is prohamiltonian if all of its nonabelian subgroups are pronormal. The aim of the paper is to show that a locally soluble group of (regular) cardinality in which all proper uncountable subgroups are prohamiltonian is prohamiltonian. In order to obtain this result, it is proved that the class of prohamiltonian groups is detectable from the behaviour of countable subgroups. Examples are exhibited to show that there are uncountable prohamiltonian groups that do not behave very well. Finally, it is shown that prohamiltonicity can sometimes be detected through the analysis of the finite homomorphic images of a group.
We prove that the restriction of a given orthogonal-complete metric space to the closure of the orbit induced by the origin point with respect to an orthogonal-preserving and orthogonal-continuous map is a complete metric space. Then we show that many existence results on fixed points in orthogonal-complete metric spaces can be proved by using the corresponding existence results in complete metric spaces.
We prove that the annihilating-ideal graph of a commutative semigroup with unity is, in general, not weakly perfect. This settles the conjecture of DeMeyer and Schneider [‘The annihilating-ideal graph of commutative semigroups’, J. Algebra469 (2017), 402–420]. Further, we prove that the zero-divisor graphs of semigroups with respect to semiprime ideals are weakly perfect. This enables us to produce a large class of examples of weakly perfect zero-divisor graphs from a fixed semigroup by choosing different semiprime ideals.
Let X be a real Banach space. The rectangular constant $\mu (X)$ and some generalisations of it, $\mu _p(X)$ for $p \geq 1$, were introduced by Gastinel and Joly around half a century ago. In this paper we make precise some characterisations of inner product spaces by using $\mu _p(X)$, correcting some statements appearing in the literature, and extend to $\mu _p(X)$ some characterisations of uniformly nonsquare spaces, known only for $\mu (X)$. We also give a characterisation of two-dimensional spaces with hexagonal norms. Finally, we indicate some new upper estimates concerning $\mu (l_p)$ and $\mu _p(l_p)$.
where $p>0$ and $ 0<s<1 $. We establish a Liouville-type theorem for positive solutions in the case $p>1$ and give a uniform lower bound of positive solutions when $0<p\leq 1$. In particular, when v is independent of the time variable, we obtain a similar result for the fractional elliptic Lichnerowicz equation
with $p>0$ and $0<s<1$. This extends the result of Brézis [‘Comments on two notes by L. Ma and X. Xu’, C. R. Math. Acad. Sci. Paris349(5–6) (2011), 269–271] to the fractional Laplacian.
Fix positive integers k and n with $k \leq n$. Numbers $x_0, x_1, x_2, \ldots , x_{n - 1}$, each equal to $\pm {1}$, are cyclically arranged (so that $x_0$ follows $x_{n - 1}$) in that order. The problem is to find the product $P = x_0x_1 \cdots x_{n - 1}$ of all n numbers by asking the smallest number of questions of the type $Q_i$: what is $x_ix_{i + 1}x_{i + 2} \cdots x_{i+ k -1}$? (where all the subscripts are read modulo n). This paper studies the problem and some of its generalisations.
Let A and $\tilde A$ be unbounded linear operators on a Hilbert space. We consider the following problem. Let the spectrum of A lie in some horizontal strip. In which strip does the spectrum of $\tilde A$ lie, if A and $\tilde A$ are sufficiently ‘close’? We derive a sharp bound for the strip containing the spectrum of $\tilde A$, assuming that $\tilde A-A$ is a bounded operator and A has a bounded Hermitian component. We also discuss applications of our results to regular matrix differential operators.
We extend work of Berdinsky and Khoussainov [‘Cayley automatic representations of wreath products’, International Journal of Foundations of Computer Science27(2) (2016), 147–159] to show that being Cayley automatic is closed under taking the restricted wreath product with a virtually infinite cyclic group. This adds to the list of known examples of Cayley automatic groups.
Let k and l be positive integers satisfying $k \ge 2, l \ge 1$. A set $\mathcal {A}$ of positive integers is an asymptotic basis of order k if every large enough positive integer can be represented as the sum of k terms from $\mathcal {A}$. About 35 years ago, P. Erdős asked: does there exist an asymptotic basis of order k where all the subset sums with at most l terms are pairwise distinct with the exception of a finite number of cases as long as $l \le k - 1$? We use probabilistic tools to prove the existence of an asymptotic basis of order $2k+1$ for which all the sums of at most k elements are pairwise distinct except for ‘small’ numbers.
We find a new refinement of Fine’s partition theorem on partitions into distinct parts with the minimum part odd. As a consequence, we obtain two companion partition identities. Both analytic and combinatorial proofs are provided.
The paper gives a simple proof of Graev’s theorem (asserting that the free product of Hausdorff topological groups is Hausdorff) for a particular case which includes the countable case of
$k_\omega $-groups and the countable case of Lindelöf P-groups. For this it is shown that in these particular cases the topology of the free product of Hausdorff topological groups coincides with the
$X_0$-topology in the Mal’cev sense, where X is the disjoint union of the topological groups identifying their units.
We determine the reflexivity index of some closed set lattices by constructing maps relative to irrational rotations. For example, various nests of closed balls and some topological spaces, such as even-dimensional spheres and a wedge of two circles, have reflexivity index 2. We also show that a connected double of spheres has reflexivity index at most 2.
Let $g \geq 2$ be an integer. A natural number is said to be a base-g Niven number if it is divisible by the sum of its base-g digits. Assuming Hooley’s Riemann hypothesis, we prove that the set of base-g Niven numbers is an additive basis, that is, there exists a positive integer
$C_g$ such that every natural number is the sum of at most
$C_g$ base-g Niven numbers.
We prove that the invariably generating graph of a finite group can have an arbitrarily large number of connected components with at least two vertices.
Let f be analytic in the unit disk
$\mathbb {D}=\{z\in \mathbb {C}:|z|<1 \}$
and let
${\mathcal S}$
be the subclass of normalised univalent functions with
$f(0)=0$
and
$f'(0)=1$
, given by
$f(z)=z+\sum _{n=2}^{\infty }a_n z^n$
. Let F be the inverse function of f, given by
$F(\omega )=\omega +\sum _{n=2}^{\infty }A_n \omega ^n$
for
$|\omega |\le r_0(f)$
. Denote by
$ \mathcal {S}_p^{* }(\alpha )$
the subset of
$ \mathcal {S}$
consisting of the spirallike functions of order
$\alpha $
in
$\mathbb {D}$
, that is, functions satisfying
for
$z\in \mathbb {D}$
,
$0\le \alpha <1$
and
$\gamma \in (-\pi /2,\pi /2)$
. We give sharp upper and lower bounds for both
$ |a_3|-|a_2| $
and
$ |A_3|-|A_2| $
when
$f\in \mathcal {S}_p^{* }(\alpha )$
, thus solving an open problem and presenting some new inequalities for coefficient differences.