Hostname: page-component-5c6d5d7d68-lvtdw Total loading time: 0 Render date: 2024-08-06T11:32:36.377Z Has data issue: false hasContentIssue false

On the construction problem for single-exit Markov chains

Published online by Cambridge University Press:  17 April 2009

P.K. Pollett
Affiliation:
Department of Mathematics, The University of Queensland, Queensland 4072, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I shall consider the following problem: given a stable, conservative, single-exit q-matrix, Q, over an irreducible state-space S and a μ-subinvariant measure, m, for Q, determine all Q-processes for which m is a μ-invariant measure. I shall provide necessary and sufficient conditions for the existence and uniqueness of such a process.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1991

References

[1]Chung, K.L., ‘On the boundary theory for Markov chains’, Acta Math. 110 (1963), 1977.Google Scholar
[2]Chung, K.L., ‘On the boundary theory for Markov chains II’, Acta Math. 115 (1967), 111163.Google Scholar
[3]Dobrušin, , ‘Some classes of homogeneous denumerable Markov processes’, Teor. Veroyatnost. i Primenen 2 (1957), 377380.Google Scholar
[4]Doob, J.L., ‘Markov chains – denumerable case’, Trans. Amer. Math. Soc. 58 (1945), 455473.Google Scholar
[5]Feller, W., ‘Boundaries induced by stochastic matrices’, Trans. Amer. Math. Soc. 83 (1956), 1954.CrossRefGoogle Scholar
[6]Feller, W., ‘On boundaries and lateral conditions for the Kolmogoroff differential equations’, Ann. Math. 65 (1957), 527570.CrossRefGoogle Scholar
[7]Kendall, D.G., ‘Some further pathological examples in the theory of denumerable Markov processes’, Quart. J. Math. Oxford 7 (1956), 3956.CrossRefGoogle Scholar
[8]Kendall, D.G. and Reuter, G.E.H., ‘Some pathological Markov processes with a denumerable infinity of states and the associated semigroups of operators on l’, Proc. Internat. Congr. Math. Amsterdam 1954 III (1954), 377415.Google Scholar
[9]Kingman, J.F.C., ‘The exponential decay of Markov transition probabilities’, Proc. London Math. Soc. 13 (1963), 337358.Google Scholar
[10]Ledermann, W. and Reuter, G.E.H., ‘Spectral theory for the differential equations of simple birth and death processes’, Philos. Trans. Roy. Soc. London 246 (1954), 321369.Google Scholar
[11]Neveu, J., ‘Lattice methods and submarkovian processes’, Proc. Fourth Berkley Symp. of Math. Statist. and Probab. II (1961), 347391.Google Scholar
[12]Neveu, J., ‘Sur les états d'entrée et les états fictifs d'un processus de Markov’, Ann. Inst. H. Poincaré Pobab. Statist. 17 (1962), 324337.Google Scholar
[13]Pollett, P.K., ‘On the equivalence of μ-invariant measures for the minimal process and its q-matrix’, Stochastic Process. Appl. 22 (1986), 203221.CrossRefGoogle Scholar
[14]Pollett, P.K., ‘Reversibility, invariance and μ-invariance’, Adv. in Appl. Probab. 20 (1988), 600621.CrossRefGoogle Scholar
[15]Pollett, P.K., ‘Invariant measures for Q-processes when Q is not regular’, Adv. in Appl. Probab. 23 (1991) (to appear).CrossRefGoogle Scholar
[16]Reuter, G.E.H., ‘Denumerable Markov processes and the associated contraction semigroups on l’, Acta Math. 97 (1957), 146.Google Scholar
[17]Reuter, G.E.H., ‘Denumerable Markov processes (II)’, J. London Math. Soc. 34 (1959), 8191.Google Scholar
[18]Reuter, G.E.H., ‘Denumerable Markov processes (III)’, J. London Math. Soc. 37 (1962), 6373.CrossRefGoogle Scholar
[19]Reuter, G.E.H., ‘Note on resolvents of denumerable submarkovian processes’, Z. Wahrscheinlichkeitstheorie 9 (1967), 1619.CrossRefGoogle Scholar
[20]Reuter, G.E.H. and Ledermann, W., ‘On the differential equations for the transition probabilities of Markov processes with enumerably many states’, Proc. Camb. Phi. Soc. 49 (1953), 274–262.Google Scholar
[21]Tweedie, R.L., ‘Some ergodic properties of the Feller minimal process’, Quart. J. Math. Oxford 25 (1974), 485495.Google Scholar
[22]Vere-Jones, D., ‘Ergodic properties on non-negative matrices I’, Pacific J. Math. 22 (1967), 361386.Google Scholar
[23]Vere-Jones, D., ‘Some limit theorems for evanescent processes’, Austral. J. Statist. 11 (1969), 6778.CrossRefGoogle Scholar
[24]Williams, D., ‘The process extended to the boundary’, Z. Wahrscheinlichkeitstheorie 2 (1963), 332339.CrossRefGoogle Scholar
[25]Williams, D., ‘On the construction problem for Markov chains’, Z. Wahrscheinlichkeitstheorie 3 (1964), 227246.Google Scholar
[26]Xiangqum, Yang, ‘Construction of Q-processes satisfying Kolmogoroff’s backward equations in single exit case of forward equations in single entrance case’, Kexue Tongbao 26 (1981), 390394.Google Scholar