Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-08T06:22:00.120Z Has data issue: false hasContentIssue false

CANONICAL DECOMPOSITION AND QUIVER REPRESENTATIONS OF TYPE $\tilde {A}_n$ OVER FINITE FIELDS

Published online by Cambridge University Press:  22 September 2022

QINGHUA CHEN*
Affiliation:
School of Mathematics and Statistics, Fu Zhou University, Fu Zhou, Fujian 350108, PR China
YE LIU
Affiliation:
School of Mathematical Sciences, Beijing Normal University, Beijing 100875, PR China Current address: The high school attached to Hunan Normal University, Chang Sha, Hunan 410006, PR China e-mail: 252241859@qq.com
*
Rights & Permissions [Opens in a new window]

Abstract

Let Q be a quiver of type $\tilde {A}_n$ . Let $\alpha =\alpha _1+\alpha _2+\cdots +\alpha _s$ be the canonical decomposition. For the polynomials $M_Q(\alpha ,q)$ that count the number of isoclasses of representations of Q over ${\mathbb F}_q$ with dimension vector $\alpha $ , we obtain a precise relation between the degree of $M_Q(\alpha ,q)$ and that of $\prod _{i=1}^{s} M_Q(\alpha _i,q)$ for an arbitrary dimension vector $\alpha $ .

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

1 Introduction

The representations of a quiver, introduced by Gabriel [Reference Gabriel7] in the 1970s, emerge as a notion of significant interest due to a remarkable relation with Lie theory. Gabriel revealed a bijective correspondence between the set of dimension vectors of indecomposable representations of a Dynkin quiver and the root system of the corresponding semisimple Lie algebra. Kac [Reference Kac9] extended Gabriel’s theorem to an arbitrary quiver.

Kac’s work shows the validity of the geometric approach to classification of indecomposable representations of quivers. Consider the representation variety $R(Q,\alpha )$ associated to a fixed dimension vector $\alpha $ of a quiver Q, on which there is an algebraic group action. Then the isoclasses of representations are identified with the orbits under the action. Let $V_p$ be the representation corresponding to a point p in $R(Q,\alpha )$ . According to the Krull–Schmidt theorem, $V_p\cong \oplus V_{i,p}$ for some indecomposable representations $V_{i,p}$ . Kac proved that the set of dimension vectors $\{\mathbf {dim}\, V_{i,p}\}$ is independent of the choice of p in some dense open subset ${\mathcal U}$ in $R(Q,\alpha )$ . This leads to the notion of a canonical decomposition $\alpha =\sum \alpha _i$ (with $\mathbf {dim}\, V_{i,p}=\alpha _i$ ) and enables us to study quiver representations by a recursive method (see [Reference Derksen and Weyman5, Reference Schofield11]).

Let ${\mathbb F}_q$ be the finite field with q elements. Let $M_Q(\alpha ,q)$ be the number of isoclasses of representations of a quiver Q over ${\mathbb F}_q$ with a fixed dimension vector $\alpha $ . This polynomial is closely related to Kac’s conjecture (see [Reference Crawley-Boevey and Van den Bergh3, Reference Hua8Reference Kac10]).

We investigate the relationships between the two families of polynomials $M_Q(\alpha ,q)$ and $\prod _{i} M_Q(\alpha _i,q)$ associated with the canonical decomposition $\alpha =\alpha _1+\alpha _2+\cdots +\alpha _s$ when Q is a tame quiver of type $\tilde {A}_n$ . This allows to collect evidence relevant to questions proposed in [Reference Chen and Liu2, Conjecture 0.1]. The main tools are basic homological properties of module categories, especially Auslander–Reiten theory.

2 Preliminaries

In this section, we give a brief review on quiver representations and the canonical decomposition (for more details, see [Reference Auslander, Reiten and Smalø1, Reference Deng, Du, Parshall and Wang4]).

Let ${\mathbb F}$ be a field. Let $Q=(Q_0,Q_1)$ be a quiver with vertex set $Q_0$ and arrow set $Q_1$ . We always assume that the quiver is finite, that is, $Q_0$ and $Q_1$ are finite sets, and write $Q_0 = \{1, 2, \ldots , n\}$ . The starting and terminating vertices of an arrow $\alpha $ will be denoted by $t(\alpha )$ and $h(\alpha )$ respectively. By definition, a finite dimensional representation $V=(V_i,V_{\alpha })$ of Q consists of a set of finite dimensional vector spaces $V_i$ for all $i\in Q_0$ and of a set of linear transformations $V_\alpha : V_{t(\alpha )}\rightarrow V_{h(\alpha )}$ for all $\alpha \in Q_1$ . A representation is said to be indecomposable if it cannot be written as the direct sum of two nonzero representations. The dimension vector $\mathbf {dim}\, V$ associated with a representation V is a nonnegative integer-valued function on the vertex set $Q_0$ and so an element of ${\mathbb Z} Q_0$ . We identify ${\mathbb Z} Q_0$ with ${\mathbb Z}^n$ in what follows.

For each $\mu =(\,\mu _i)\in {\mathbb Z}^n$ , let $\mathop{\mathrm{supp}}\nolimits \mu =\{i\in Q_0\mid \mu _i\not =0\}$ be the support of $\mu $ . We say that $\mathop{\mathrm{supp}}\nolimits \mu $ is connected if the full subquiver of Q with vertex set $\mathop{\mathrm{supp}}\nolimits \mu $ is connected.

Now assume that ${\mathbb F}$ is an algebraically closed field. Fix a dimension vector $\alpha $ of Q. The representation variety associated with $\alpha $ is the affine space

$$ \begin{align*}R(Q,\alpha):=\prod\limits_{\rho:i\rightarrow j}{\mathrm{Hom}\,}({\mathbb F}^{\alpha_i},{\mathbb F}^{\alpha_j}).\end{align*} $$

Thus, each element x in $R(Q,\alpha )$ determines a representation $V_x$ of Q with dimension vector $\alpha $ . The algebraic group $GL_{\alpha }({\mathbb F}):=\prod _{i\in Q_0}GL_{\alpha _i}({\mathbb F})$ acts on $R(Q,\alpha )$ by conjugation. It is known that $GL_{\alpha }({\mathbb F})$ -orbits ${\mathcal O}_x$ correspond bijectively to isoclasses $[V_x]$ of representations of Q with dimension vector $\alpha $ .

Let Q be a quiver with n vertices and $\alpha =(\alpha _i),\beta =(\,\beta _i)\in {\mathbb Z}^n$ . The bilinear forms

$$ \begin{align*}\langle \alpha,\beta\,\rangle:=\sum_{i=1}^n\alpha_i\beta_i-\sum_{\alpha\in Q_1}\alpha_{t(\alpha)}\,\beta_{h(\alpha)}\quad\mbox{and}\quad (\alpha,\beta):=\langle \alpha,\beta\,\rangle+\langle\,\beta,\alpha\rangle\end{align*} $$

on ${\mathbb Z}^n$ are called the Euler form and the symmetric Euler form of Q, respectively.

We now recall from [Reference Kac9, Reference Kac10] the notion of canonical decomposition of a dimension vector. Generic representations of $\alpha $ are said to have the property P if there exists a dense open subset ${\mathcal U}$ of $R(Q,\alpha )$ such that all representations parametrised by points in ${\mathcal U}$ have the property P.

Definition 2.1. The canonical decomposition of a dimension vector $\alpha $ is the sum $\alpha =\beta _1+\beta _2+\cdots +\beta _s$ provided that generic representations of $\alpha $ have indecomposable summands whose dimension vectors are given by these $\beta _i$ .

By definition, the canonical decomposition of a fixed dimension vector is unique up to reordering.

Definition 2.2. Write $\beta \hookrightarrow \alpha $ for the property that there exists a dense open subset ${\mathcal U}$ such that each representation parametrised by points in ${\mathcal U}$ of dimension vector $\alpha $ has a subrepresentation of dimension vector $\beta $ .

Given two dimension vectors $\alpha ,\beta $ of Q, denote by ${\mathrm {hom}\,}(\alpha ,\beta )$ and ${\mathrm {ext}\,}(\alpha ,\beta )$ the minimal value of the upper semi-continuous functions $\mathrm {dim}\,{\mathrm {Hom}\,}_Q(-,-)$ and $\mathrm {dim}\,{\mathrm {Ext}\,}^1_Q(-,-))$ on $R(Q,\alpha )\times R(Q,\beta )$ , respectively.

Definition 2.3. We call $\alpha $ a Schur root if $\alpha $ is the dimension vector of a representation with endormorphism ring ${\mathbb F}$ .

Theorem 2.4 [Reference Kac10]

The sum $\alpha =\beta _1+\beta _2+\cdots +\beta _s$ is the canonical decomposition if and only if $\beta _i$ is a Schur root and ${\mathrm {ext}\,}(\,\beta _i,\beta _j)=0$ for $i\not =j$ .

Theorem 2.5 [Reference Schofield11]

We have ${\mathrm {ext}\,}(\alpha ,\beta )=\max _{\alpha ^{\prime }\hookrightarrow \alpha }\{-\langle \alpha ^{\prime },\beta \,\rangle \}.$

3 Main results

Throughout this section, assume that the quiver Q of type $\tilde {A}_n$ , where $n=s+t$ , has s arrows going clockwise and t arrows going anticlockwise:

We first recall some properties of module categories of tame quivers of type $\tilde {A}_n$ from [Reference Dlab and Ringel6]. Note that representations of Q are identified with left modules over the path algebra A of Q. Denote by $\Gamma (Q)$ the Auslander–Reiten quiver of A. It is known that $\Gamma (Q)$ has one preprojective component, one preinjective component and infinitely many regular tubes including two nonhomogeneous tubes ${\mathcal T}_1$ and ${\mathcal T}_2$ with ranks t and s, respectively. We say M is a preprojective, preinjective or regular module according as all indecomposable summands of M belong to the preprojective, preinjective or regular component of $\Gamma (Q)$ , respectively.

In what follows, we define by convention the partial order $<$ on the set of roots of Q by saying $\alpha <\beta $ if each component of $\alpha $ is less than or equal to that of $\beta $ . Note that $\delta =(1,1,\ldots ,1)\in {\mathbb Z}^n$ is the minimal positive imaginary root of Q.

Definition 3.1. Let Q be a quiver of type $\tilde {A_n}$ . Let $\alpha =n\delta +\gamma $ with $n\in {\mathbb N}$ and a real root $\gamma $ satisfying $0<\gamma <\delta $ .

  1. (1) If $\{b_j\}_{j=0}^t\subseteq \mathop{\mathrm{supp}}\nolimits \gamma $ , then we call $\alpha $ a lower arc. If $\{a_i\}_{i=0}^s\subseteq \mathop{\mathrm{supp}}\nolimits \gamma $ , then we call $\alpha $ an upper arc.

  2. (2) If $\mathop{\mathrm{supp}}\nolimits \gamma =\{a_i\}_{i=i_0}^s \cup \{b_j\}_{j=j_0}^t \; (1\leq i_0\leq s,1\leq j_0\leq t)$ , then we call $\alpha $ a right arc. If $\mathop{\mathrm{supp}}\nolimits \gamma =\{a_i\}_{i=0}^{s_0} \cup \{b_j\}_{j=0}^{t_0} \;(0\leq s_0\leq s-1,1\leq t_0\leq t-1)$ , then we call $\alpha $ a left arc.

  3. (3) If $\mathop{\mathrm{supp}}\nolimits \gamma =\{a_i\}_{i=u}^v \;(0<u<v<s)$ or $\mathop{\mathrm{supp}}\nolimits \gamma =\{b_j\}_{j=u'}^{v'} \;(0<u'<v'<t)$ , then we call $\alpha $ a short arc.

Remark 3.2. An indecomposable $kQ$ -module M is preprojective or preinjective if and only if $\mathbf {dim}\, M$ is a right or a left arc, respectively. If M is an indecomposable $kQ$ -module with $\mathbf {dim}\, M$ an upper or a lower arc, then M is regular. Moreover, $\mathbf {dim}\, M$ is an upper or a lower arc if and only if M lies in ${\mathcal T}_1$ or ${\mathcal T}_2$ , respectively.

Example 3.3. Let Q be the quiver of type $\tilde {A}_5$ .

Then $\alpha _1=(1,1,0,1,1,1)$ is a lower arc and $\alpha _2=(3,3,3,2,2,3)$ is an upper arc; $\alpha _3=(3,4,4,3,4,4)$ is a right arc and $\alpha _4=(1,1,0,1,0,0)$ is a left arc; $\alpha _5=(0,1,1,0,0,0)$ and $\alpha _6=(1,1,1,2,2,1)$ are both short arcs.

For canonical decompositions of quivers of type $\tilde {A}_n$ , we follow Schofield’s inductive algorithm [Reference Schofield11]. For more details, see [Reference Chen and Liu2, Examples 2.8 and 2.9], which is our case when $n=3$ and $(s,t)=(2,1)$ .

Lemma 3.4. Let $\alpha $ , $\beta $ be real roots of Q satisfying $0<\alpha ,\,\beta <\delta $ and $\alpha +\beta \geq \delta $ . Then ${\mathrm {ext}\,}(\alpha ,\beta )=0={\mathrm {ext}\,}(\,\beta ,\alpha )$ if and only if $\alpha $ and $\beta $ are a lower arc and an upper arc, respectively.

Proof. Suppose that $\alpha $ and $\beta $ are a lower arc and an upper arc, respectively. From Remark 3.2, there exist indecomposable regular modules $V,W$ with dimension vectors $\alpha ,\beta $ , which lie in ${\mathcal T}_2$ and ${\mathcal T}_1$ , respectively. It follows that

$$ \begin{align*}\mathrm{dim}\, {\mathrm{Ext}\,}_Q^1(V,W)=\mathrm{dim}\, {\mathrm{Ext}\,}_Q^1(W,V)=0.\end{align*} $$

Therefore, ${\mathrm {ext}\,}(\alpha ,\beta )=0={\mathrm {ext}\,}(\,\beta ,\alpha )$ .

Conversely, suppose that there are two real roots $\alpha , \beta <\delta $ satisfying $\alpha +\beta \geq \delta $ and ${\mathrm {ext}\,}(\alpha ,\beta )=0={\mathrm {ext}\,}(\,\beta ,\alpha )$ . We claim that $\alpha +\beta>\delta $ . Indeed if $\alpha +\beta =\delta $ , then

$$ \begin{align*}\begin{array}{lll} (\alpha,\beta)&\!\!\!\!=(\alpha,\delta-\alpha)=-(\alpha,\alpha)=-2\\ &\!\!\!\!=\langle\alpha,\beta\,\rangle+\langle\,\beta,\alpha\rangle. \end{array}\end{align*} $$

Thus, $\langle \alpha ,\beta \,\rangle <0$ (or $\langle \,\beta ,\alpha \rangle <0$ ), that is, ${\mathrm {ext}\,}(\alpha ,\beta )>0$ (or ${\mathrm {ext}\,}(\,\beta ,\alpha )>0$ ), which is a contradiction.

If $\alpha $ is the dimension vector of an indecomposable preprojective module, that is, $\alpha $ is a right arc, put

$$ \begin{align*}\mathop{\mathrm{supp}}\nolimits \alpha=\{a_i\}_{i=i_0}^s \cup \{b_j\}_{j=j_0}^t \quad (1\leq i_0\leq s,1\leq j_0\leq t).\end{align*} $$

Case 1: $\beta $ is the dimension vector of an indecomposable preprojective module. Clearly, $\alpha +\beta \ngeq \delta $ , which is a contradiction.

Case 2: $\beta $ is the dimension vector of an indecomposable preinjective module. Assume that

$$ \begin{align*}\mathop{\mathrm{supp}}\nolimits \beta=\{a_i\}_{i=0}^{s_0} \cup \{b_j\}_{j=0}^{t_0} \quad (0\leq s_0\leq s-1,1\leq t_0\leq t-1).\end{align*} $$

Thus, $s_0\geq i_0-1$ and $t_0\geq j_0-1$ . Consequently,

$$ \begin{align*}\langle\,\beta,\alpha\rangle=s_0-i_0+1+t_0-j_0+1-(s_0-(i_0-1)+1+t_0-(\,j_0-1)+1)=-2,\end{align*} $$

which implies that ${\mathrm {ext}\,}(\,\beta ,\alpha )>0$ , which is a contradiction.

Case 3: $\beta $ is the dimension vector of an indecomposable regular module. Since ${\alpha +\beta>\delta} $ and $\beta <\delta $ , it follows that $\beta $ is a lower arc or an upper arc. If $\beta $ is a lower arc, then

$$ \begin{align*}\mathop{\mathrm{supp}}\nolimits\beta=\{b_j\}_{j=0}^t \cup \{a_i\}_{i=0}^m \cup \{a_i\}_{i=n}^s \quad (0\leq m<n\leq s)\end{align*} $$

and $m\geq i_0-1$ . Consequently,

$$ \begin{align*} \langle\,\beta,\alpha\rangle & =m-i_0+1+s-n+1+t-1-j_0+1 \\ &\quad -(m-(i_0-1)+1+s-1-n+1+t-1-(\,j_0-1)+1) \\ & =-1. \end{align*} $$

This implies that ${\mathrm {ext}\,}(\,\beta ,\alpha )>0$ , contrary to the hypothesis. If $\beta $ is an upper arc, a similar argument also leads to a contradiction.

Case 4: $\alpha $ is the dimension vector of an indecomposable preinjective module. This case can be handled similarly and leads to a contradiction.

Therefore, $\alpha $ and $\beta $ are both dimension vectors of regular modules. Since $\alpha +\beta>\delta $ , it follows that there exists at least one dimension vector which is a lower arc or an upper arc. Assume that $\alpha $ is a lower arc, that is,

$$ \begin{align*}\mathop{\mathrm{supp}}\nolimits\alpha=\{b_j\}_{j=0}^t \cup \{a_i\}_{i=0}^m \cup \{a_i\}_{i=n}^s \quad (0\leq m<n\leq s).\end{align*} $$

We claim that $\beta $ is an upper arc. Indeed, on the one hand, if $\beta $ is a short arc, that is,

$$ \begin{align*}\mathop{\mathrm{supp}}\nolimits \beta=\{a_i\}_{i=u}^v \quad (0<u<v<s),\end{align*} $$

then $v\geq n-1$ and $m\geq u-1$ . Let $\beta ^{\prime }$ be a dimension vector satisfying that $0<\beta ^{\prime }<\delta $ and $\mathop{\mathrm{supp}}\nolimits \beta ^{\prime }=\{a_i\}_{i=n-1}^v.$ Thus, ${\mathrm {ext}\,}(\,\beta ^{\prime },\beta -\beta ^{\prime })=0.$ Therefore, $\beta ^{\prime }\,{\hookrightarrow}\, \beta $ and

$$ \begin{align*}\langle\,\beta^{\prime},\alpha\rangle=v-n+1-(v-(n-1)+1)=-1,\end{align*} $$

which implies that ${\mathrm {ext}\,}(\,\beta ,\alpha )>0$ , which is a contradiction. On the other hand, if $\beta $ is a lower arc, that is,

$$ \begin{align*}\mathop{\mathrm{supp}}\nolimits\beta=\{b_j\}_{j=0}^t \cup \{a_i\}_{i=0}^{m^{\prime}} \cup \{a_i\}_{i={n}^{\prime}}^s \quad (0\leq m^{\prime}<n^{\prime}\leq s),\end{align*} $$

then $m\geq n^{\prime }-1$ or $m^{\prime }\geq n-1$ . Since $\alpha +\beta \geq \delta $ and $\alpha <\delta $ , it follows that $\beta>\delta $ , which is a contradiction. In conclusion, $\alpha $ and $\beta $ are a lower arc and an upper arc, respectively.

Lemma 3.5. Assume that $\alpha $ , $\beta $ are real roots of Q such that $0<\alpha ,\beta <\delta $ and $\alpha +\beta \geq \delta $ . If ${\mathrm {ext}\,}(\alpha ,\beta )=0={\mathrm {ext}\,}(\,\beta ,\alpha )$ , then

$$ \begin{align*}{\mathrm{ext}\,}(\delta,\alpha)=0={\mathrm{ext}\,}(\alpha,\delta)\quad \text{and}\quad {\mathrm{ext}\,}(\delta,\beta)=0={\mathrm{ext}\,}(\,\beta,\delta).\end{align*} $$

Proof. According to Lemma 3.4, $\alpha ,\;\beta $ are a lower arc and an upper arc, respectively. Suppose $\alpha $ is a lower arc. Set

$$ \begin{align*}\mathop{\mathrm{supp}}\nolimits \alpha=\{b_j\}_{j=0}^t \cup \{a_i\}_{i=1}^m \cup \{a_i\}_{i=n}^{s} \quad (0\leq m<n\leq s).\end{align*} $$

It is straightforward to calculate that

$$ \begin{align*} \langle\alpha,\delta\rangle =m+s-n+t+1-(m+1+t+s-n)=0. \end{align*} $$

Applying the fact that $(\alpha ,\delta )=0$ , we get $\langle \delta ,\alpha \rangle =0$ . Let $X_{\alpha }$ be the unique indecomposable module of dimension vector $\alpha $ . Put

$$ \begin{align*} Y_{\delta}=N\oplus\bigoplus_{j=m+2}^{n-1}S_{a_j} \quad\mbox{and}\quad Y_{\delta}^{\prime}=N'\oplus \bigoplus_{j=m+1}^{n-2}S_{a_j} \end{align*} $$

for indecomposable modules $N,N'$ with

$$ \begin{align*}\mathop{\mathrm{supp}}\nolimits \mathbf{dim}\, N=\mathop{\mathrm{supp}}\nolimits \alpha\cup \{a_{m+1}\}\quad\text{and}\quad \mathop{\mathrm{supp}}\nolimits \mathbf{dim}\, N'=\mathop{\mathrm{supp}}\nolimits \alpha\cup \{a_{n-1}\},\end{align*} $$

respectively. It is easy to check that

$$ \begin{align*}{\mathrm{Hom}\,}(X_{\alpha},N)=0\quad \text{and}\quad {\mathrm{Hom}\,}(N',X_{\alpha})=0.\end{align*} $$

Hence, ${\mathrm {Hom}\,}(X_{\alpha },Y_{\delta })=0$ and ${\mathrm {Hom}\,}(Y^{\prime }_{\delta },X_{\alpha })=0$ . It follows that

$$ \begin{align*}\mathrm{dim}\,{\mathrm{Ext}\,}(X_{\alpha},Y_{\delta})=0\;\quad\text{and}\quad \mathrm{dim}\,{\mathrm{Ext}\,}(Y^{\prime}_{\delta},X_{\alpha})=0,\end{align*} $$

which implies that ${\mathrm {ext}\,}(\alpha ,\delta )=0={\mathrm {ext}\,}(\delta ,\alpha ).$ The other case is treated similarly.

Lemma 3.6. Let $\alpha _1=n_1\delta +\gamma _1$ and $\alpha _2=n_2\delta +\gamma _2$ be two dimension vectors, where $\gamma _1,\gamma _2$ are real roots satisfying $0<\gamma _1,\gamma _2<\delta $ , and $\gamma _1+\gamma _2\geq \delta $ . Suppose ${\mathrm {ext}\,}(\alpha _1,\alpha _2)=0={\mathrm {ext}\,}(\alpha _2,\alpha _1)$ . Then ${\mathrm {ext}\,}(\gamma _1,\gamma _2)=0={\mathrm {ext}\,}(\gamma _2,\gamma _1)$ .

Proof. Suppose on the contrary that ${\mathrm {ext}\,}(\gamma _1,\gamma _2)\neq 0$ or ${\mathrm {ext}\,}(\gamma _2,\gamma _1)\neq 0$ .

Case 1: $\gamma _1$ is a dimension vector of an indecomposable preprojective module.

(1) If $\gamma _2$ is a dimension vector of an indecomposable preprojective module, then we have $\gamma _1+\gamma _2\ngeq \delta $ , which is a contradiction.

(2) If $\gamma _2$ is a dimension vector of an indecomposable preinjective module, since there is no nonzero homomorphism from preinjective modules to preprojective modules, it follows that $\langle \gamma _2,\gamma _1\rangle <0$ and, by a direct calculation, $\langle \delta ,\gamma _1\rangle <0$ and $\langle \gamma _2,\delta \rangle <0$ . Therefore, $\langle \alpha _1,\alpha _2\rangle =\langle n_2\delta +\gamma _2,n_1\delta +\gamma _1\rangle =n_2\langle \delta ,\gamma _1\rangle +n_1\langle \gamma _2,\delta \rangle +\langle \gamma _2,\gamma _1\rangle <0$ , which forces ${\mathrm {ext}\,}(\alpha _2,\alpha _1)\neq 0$ , which is a contradiction.

(3) If $\gamma _2$ is a dimension vector of an indecomposable regular module, then we have ${\langle \gamma _2,\gamma _1\rangle <0}$ and $\langle \delta ,\gamma _2\rangle =0=\langle \gamma _2,\delta \rangle <0$ . This implies that

$$ \begin{align*}\langle n_2\delta+\gamma_2,n_1\delta+\gamma_1\rangle=n_2\langle\delta,\gamma_1\rangle+n_1\langle\gamma_2,\delta\rangle+\langle\gamma_2,\gamma_1\rangle<0,\end{align*} $$

so ${\mathrm {ext}\,}(\alpha _2,\alpha _1)\neq 0$ , which is a contradiction.

Case 2. $\gamma _1$ is the dimension vector of an indecomposable preinjective module. This is the case dual to Case 1.

Case 3. $\gamma _1$ , $\gamma _2$ are the dimension vectors of indecomposable regular modules. Since $\gamma _1+\gamma _2>\delta $ , at least one of $\gamma _1, \;\gamma _2$ is a lower arc or an upper arc. Assume that $\gamma _1$ is a lower arc, that is,

$$ \begin{align*}\mathop{\mathrm{supp}}\nolimits\gamma_1=\{b_j\}_{j=0}^t \cup \{a_i\}_{i=0}^m \cup \{a_i\}_{i=n}^s \quad (0\leq m<n\leq s).\end{align*} $$

If $\gamma _2$ is a short arc, we put $\mathop{\mathrm{supp}}\nolimits \gamma _2=\{\alpha _i\}_{i=u}^v\;(0<u<v<s)$ . Thus, $i_m\geq u-1, i_n\geq v-1$ . By Lemma 3.4, there exists $\gamma ^{\prime }_2 \in {\mathbb N}^n$ such that $0<\gamma ^{\prime }_2 <\delta $ and $\gamma ^{\prime }_2 \hookrightarrow \gamma _2$ . Moreover, $\langle \gamma ^{\prime }_2,\gamma _1\rangle <0 $ . Consequently, $n_2\delta +\gamma ^{\prime }_2\hookrightarrow n_2\delta +\gamma _2$ , and

$$ \begin{align*}\langle n_2\delta+\gamma^{\prime}_2,n_1\delta+\gamma_1\rangle=\langle\gamma^{\prime}_2,\gamma_1\rangle<0.\end{align*} $$

This implies that ${\mathrm {ext}\,}(\alpha _2,\alpha _1)>0$ , which is contrary to the hypothesis.

If $\gamma _2$ is a lower arc, put

$$ \begin{align*}\mathop{\mathrm{supp}}\nolimits\gamma_2=\{b_j\}_{j=0}^t \cup \{a_i\}_{i=0}^{m'} \cup \{a_i\}_{i={n}'}^s \quad (0\leq m'<n'\leq s),\end{align*} $$

so $i_m\geq n'-1$ or $m'\geq i_n-1$ .

(1) If $i_m\geq n'-1$ , then by Lemma 3.4, there exists $\gamma ^{\prime }_1\in {\mathbb N}^n$ such that $0<\gamma ^{\prime }_1<\delta $ satisfying $\gamma _1\hookrightarrow \gamma _1$ and $\langle \gamma ^{\prime }_1,\gamma _2\rangle <0 $ . Consequently, $n_1\delta +\gamma ^{\prime }_1\hookrightarrow n_1\delta +\gamma _1$ and

$$ \begin{align*}\langle n_1\delta+\gamma^{\prime}_1,n_2\delta+\gamma_2\rangle=\langle\gamma^{\prime}_1,\gamma_2\rangle<0.\end{align*} $$

Hence, ${\mathrm {ext}\,}(\alpha _1,\alpha _2)>0$ , which is a contradiction.

(2) If $m'\geq i_n-1$ , then by Lemma 3.4 again, there exists $\gamma ^{\prime }_2\in {\mathbb N}^n$ such that $0<\gamma ^{\prime }_2<\delta $ satisfying $\gamma ^{\prime }_2\hookrightarrow \gamma _2$ and $\langle \gamma _2,\gamma _1\rangle <0 $ . Thus we obtain $n_2\delta +\gamma ^{\prime }_2\hookrightarrow n_2\delta +\gamma _2$ and

$$ \begin{align*}\langle n_2\delta+\gamma^{\prime}_2,n_1\delta+\gamma_1\rangle=\langle\gamma^{\prime}_2,\gamma_1\rangle<0.\end{align*} $$

Hence, ${\mathrm {ext}\,}(\alpha _2,\alpha _1)>0$ , which is a contradiction.

If $\gamma _2$ is an upper arc, it follows from Lemma 3.4 that

$$ \begin{align*}{\mathrm{ext}\,}(\alpha_1,\alpha_2)=0={\mathrm{ext}\,}(\alpha_2,\alpha_1). \end{align*} $$

This is a contradiction. We deal with the case where $\gamma _1$ is an upper arc by a similar argument. In conclusion, we have ${\mathrm {ext}\,}(\gamma _1,\gamma _2)=0={\mathrm {ext}\,}(\gamma _2,\gamma _1),$ as desired.

Lemma 3.7. Suppose that $\alpha =n\delta +\gamma $ is the dimension vector of an indecomposable preprojective or preinjective module, where $\gamma $ is a real root satisfying $0<\gamma <\delta $ . Then ${\mathrm {ext}\,}(\delta ,\alpha )>0$ or ${\mathrm {ext}\,}(\alpha ,\delta )>0$ , respectively.

Proof. Since $\alpha $ is the dimension vector of an indecomposable preprojective module, $\alpha $ is a right arc and so $\gamma $ is a right arc. Assume that $\mathop{\mathrm{supp}}\nolimits \gamma =\{a_i\}_{i=i_0}^s \cup \{b_j\}_{j=j_0}^t\; \text {for} \;1\leq i_0\leq s \;\text {and}\;1\leq j_0\leq t.$ Therefore,

$$ \begin{align*}\langle\delta,\alpha\rangle=\langle\delta,\gamma\rangle=s-i_0+1+t-j_0-(s-i_0+1+t-j_0+1)=-1,\end{align*} $$

which implies ${\mathrm {ext}\,}(\delta ,\alpha )>0$ . The case for an indecomposable preinjective module is handled similarly. This completes the proof.

Proposition 3.8. Let $\alpha =\underbrace {\delta +\cdots +\delta }_{m}+\,\alpha _1+\cdots +\alpha _l$ be the canonical decomposition of a dimension vector $\alpha $ of Q. Let $\alpha _i=n_i\delta +\gamma _i$ with $0<\gamma _i<\delta $ for each i. Denote by $s_1,s_2$ the number of lower arcs and upper arcs, respectively, in the decomposition. Then

$$ \begin{align*}\gamma_1+\gamma_2+\cdots+\gamma_l\not \geq (\min\{s_1,s_2\}+1)\delta.\end{align*} $$

Proof. We may assume that $s_1\geq s_2$ .

Case 1: $s_1=0$ . If $m>0$ , by Theorem 2.4 and Lemma 3.7, each $\alpha _i$ is the dimension vector of a regular module. Then all $\gamma _i$ are short arcs. Clearly, $\gamma _1+\gamma _2+\cdots +\gamma _l\not \geq \delta .$ If $m=0$ , then assume that $\gamma _1,\ldots ,\gamma _{t_1}$ are right arcs, $\gamma _{t_1+1},\ldots ,\gamma _{t_1+t_2}$ are left arcs and $\gamma _{t_1+t_2+1},\ldots \gamma _{t_1+t_2+t_3}$ are short arcs. Note that $l=t_1+t_2+t_3$ . First we claim that $\gamma _1+\cdots +\gamma _{t_1+t_2}\not \geq \delta $ . Otherwise, there exist $\gamma _f \;(1\leq f\leq t_1)$ and $\gamma _g \;(t_1< g\leq t_1+t_2)$ with

$$ \begin{align*} \mathop{\mathrm{supp}}\nolimits\gamma_f&= \{a_i\}_{i=i_0}^s \cup \{b_j\}_{j=j_0}^t \quad (1\leq i_0\leq s,1\leq j_0\leq t)\\ \mathop{\mathrm{supp}}\nolimits\gamma_g&=\{a_i\}_{i=0}^{s_0} \cup \{b_j\}_{j=0}^{t_0} \quad (0\leq s_0\leq s-1,1\leq t_0\leq t-1) \end{align*} $$

satisfying $s_0\geq i_0-1$ . Thus, $\langle \gamma _g,\gamma _f\rangle <0$ . By Lemma 3.6, ${\mathrm {ext}\,}(\alpha _g,\alpha _f)>0$ , which is a contradiction. Further, we claim that $\gamma _1+\cdots +\gamma _l\not \geq \delta $ . Suppose on the contrary that $\gamma _1+\cdots +\gamma _{t_1+t_2}\not \geq \delta $ and $\gamma _1+\cdots +\gamma _l\geq \delta $ . Then there exist roots $\gamma _f \; (1\leq f\leq t_1)$ and $\gamma _h \;(t_1+t_2< h\leq ~l)$ with

$$ \begin{align*} \mathop{\mathrm{supp}}\nolimits \gamma_f&= \{a_i\}_{i=i_0}^s \cup \{b_j\}_{j=j_0}^t \quad (1\leq i_0\leq s,1\leq j_0\leq t),\\ \mathop{\mathrm{supp}}\nolimits\gamma_h&=\{a_i\}_{i=u}^{v} \quad (0<u<v<s), \end{align*} $$

for $v\geq i_0-1$ . Hence, $\langle \gamma _h,\gamma _f\rangle <0$ . Again by Lemma 3.6, ${\mathrm {ext}\,}(\alpha _h,\alpha _f)>0$ , which is a contradiction.

Case 2: $s_1\neq 0$ . Assume that $\gamma _1,\gamma _2,\ldots ,\gamma _{s_1}$ are all lower arcs and $\gamma _{s_1+1},\ldots ,\gamma _{s_1+s_2}$ are upper arcs (the case $s_2=0$ is included). We claim that $\gamma _1+\gamma _2+\cdots +\gamma _{s_1+s_2}\not \geq (\min \{s_1,s_2\}+1)\delta .$ Otherwise, there exist $\gamma _c,\gamma _d$ such that $\gamma _c+\gamma _d>\delta $ for $1\leq c,d\leq s_1+s_2$ . By Lemmas 3.4 and 3.7, ${\mathrm {ext}\,}(\alpha _c,\alpha _d)>0$ or ${\mathrm {ext}\,}(\alpha _d,\alpha _c)>0$ . This leads to a contradiction. Further, we claim that $\gamma _1+\gamma _2+\cdots +\gamma _l\not \geq (\min \{s_1,s_2\}+1)\delta .$ Suppose on the contrary that $\gamma _1+\gamma _2+\cdots +\gamma _l\geq (\min \{s_1,s_2\}+1)\delta .$ Then there exist $\gamma _c, \gamma _e$ for some $1\leq c \leq s_1$ and $s_1+s_2<e\leq l$ such that

$$ \begin{align*} \mathop{\mathrm{supp}}\nolimits \gamma_c&=\{b_j\}_{j=0}^t \cup \{a_i\}_{i=0}^{i_m} \cup \{a_i\}_{i=i_n}^s \quad (0\leq i_m<i_n\leq s),\\ \mathop{\mathrm{supp}}\nolimits \gamma_e&=\{a_i\}_{i=u}^v \quad (0<u<v<s), \end{align*} $$

for $v\geq i_n-1$ . Let $0<\gamma ^{\prime }_e<\delta $ and $\mathop{\mathrm{supp}}\nolimits \gamma ^{\prime }_e=\{a_i\}_{i=i_n-1}^v$ . Thus, $\gamma ^{\prime }_e\hookrightarrow \gamma _e$ and

$$ \begin{align*}\langle\gamma^{\prime}_e,\gamma_c\rangle=v-i_n+1-(v-(i_n-1)+1)=-1<0,\end{align*} $$

which implies ${\mathrm {ext}\,}(\gamma _e,\gamma _c)>0$ . By Lemma 3.6, ${\mathrm {ext}\,}(\alpha _{e},\alpha _{c})>0$ , which is a contradiction.

For the rest of this section, let ${\mathbb F}={\mathbb F}_q$ be the finite field with q elements. Let $M_Q(\alpha ,q)$ be the number of isoclasses of representations of a quiver Q over ${\mathbb F}$ with a fixed dimension vector $\alpha $ .

Lemma 3.9 [Reference Chen and Liu2]

Suppose that Q is a tame quiver and $\alpha =n_0\delta +\gamma $ is the dimension vector of Q for some $\gamma \geq 0$ and $\gamma \not \geq \delta $ . Then $\deg (M_{Q}(\alpha ,q))=n_0$ .

There is no general formula for the canonical decomposition of a fixed dimension vector of Q. To address the issue, we follow Schofield’s inductive algorithm [Reference Schofield11], as in our previous paper [Reference Chen and Liu2].

Theorem 3.10. Assume that $\alpha =\underbrace {\delta +\cdots +\delta }_{m}+\,\alpha _1+\cdots +\alpha _l$ is the canonical decomposition of a dimension vector $\alpha $ of Q, where $\alpha _i \;(i=1,2,\ldots ,l)$ are all real Schur roots. Then

$$ \begin{align*}\lim_{q\rightarrow\infty}\frac{M_Q(\alpha,q)} {(M_Q(\delta,q))^{m}q^x\prod_{i=1}^l M_Q(\alpha_i,q)} =\text{constant},\end{align*} $$

where $s_1,\;s_2$ are the numbers of lower arcs and upper arcs, respectively, and $x=\min \{s_1,s_2\}$ .

Proof. Since Q is a quiver of type $\tilde {A}_n$ and $\alpha _i \;(i=1,2,\ldots ,l)$ are all real roots, it follows that $\alpha _i=n_i\delta +\gamma _i $ , where $\gamma _i $ are all real roots and $0<\gamma _i<\delta $ for $i\in \{1,\ldots ,l\}$ . Now assume that $s_1\geq s_2$ . (The case for $s_2\geq s_1$ can be handled similarly.) By Proposition 3.8,

$$ \begin{align*}\gamma_1+\gamma_2+\cdots+\gamma_l\not \geq (\min\{s_1,s_2\}+1)\delta.\end{align*} $$

Again by Lemma 3.9,

$$ \begin{align*}\deg (M_{Q}(\alpha_i,q))=n_i\quad\text{and}\quad\deg (M_{Q}(\alpha,q))=m+n_1+n_2+\cdots +n_l+\min\{s_1,s_2\}.\end{align*} $$

Therefore, $\deg (M_Q(\alpha ,q))\kern1.3pt{=}\kern1.3pt \sum _{i=1}^l \deg (M_Q(\alpha _i,q))\kern1.3pt{+}\kern1.3pt m\kern1.3pt{+}\kern1.3pt x.$ This completes the proof.

Example 3.11. As an illustration, we consider Example 3.10 in [Reference Chen and Liu2]. Let Q be the quiver of type $\tilde {A}_2$ :

Then the canonical decomposition of $\alpha =(2,3,3)$ is $\alpha =(0,1,0)+(2,2,3)=\alpha _1+\alpha _2$ . An elementary calculation yields

$$ \begin{align*}M_{Q}(\alpha,q)=2q^2+16q+72, \quad M_{Q}(\alpha_1,q)=1, \quad M_{Q}(\alpha_2,q)=q^2+9q+44.\end{align*} $$

Thus,

$$ \begin{align*}\lim_{q\rightarrow\infty}\frac{M_Q(\alpha,q)} {(M_Q(\alpha_1,q))M_Q(\alpha_2,q)} =2,\end{align*} $$

which is consistent with the main theorem.

References

Auslander, M., Reiten, I. and Smalø, S., Representation Theory of Artin Algebras, Cambridge Studies in Advanced Mathematics, 36 (Cambridge University Press, Cambridge, 1997).Google Scholar
Chen, Q. and Liu, Y., ‘Canonical decomposition and quiver representations over finite field’, Comm. Algebra 46(11) (2018), 48594867.CrossRefGoogle Scholar
Crawley-Boevey, W. W. and Van den Bergh, M., ‘Absolutely indecomposable representations and Kac–Moody Lie algebras’, Invent. Math. 155(3) (2001), 537559, with an appendix by H. Nakajima.Google Scholar
Deng, B., Du, J., Parshall, B. and Wang, J., Finite Dimensional Algebras and Quantum Groups, Mathematical Surveys and Monographs, 150 (American Mathematical Society, Providence, RI, 2008).CrossRefGoogle Scholar
Derksen, H. and Weyman, J., ‘On the canonical decomposition of quiver representations’, Compos. Math. 133 (2002), 245265.CrossRefGoogle Scholar
Dlab, V. and Ringel, C. M., Indecomposable Representations of Graphs and Algebras, Memoirs of the American Mathematical Society, 6(173) (American Mathematical Society, Providence, RI, 1976).CrossRefGoogle Scholar
Gabriel, P., ‘Unzerlegbare Darstellungen I’, Manuscripta Math. 6 (1972), 71103.CrossRefGoogle Scholar
Hua, J., ‘Counting representations of quivers over finite fields’, J. Algebra 226 (2000), 10111013.CrossRefGoogle Scholar
Kac, V., ‘Infinite root systems, representations of graphs and invariant theory’, Invent. Math. 56 (1980), 5792.CrossRefGoogle Scholar
Kac, V., ‘Infinite root systems, representations of graphs and invariant theory II’, J. Algebra 78 (1982), 141162.CrossRefGoogle Scholar
Schofield, A., ‘General representations of quivers’, Proc. Lond. Math. Soc. (3) 65 (1992), 4664.CrossRefGoogle Scholar