Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T16:19:30.164Z Has data issue: false hasContentIssue false

White bean amylase inhibitor administered orally reduces glycaemia in type 2 diabetic rats

Published online by Cambridge University Press:  17 April 2007

M. A. Tormo*
Affiliation:
Dpto. de Fisiología, Facultad de Medicina, Universidad de Extremadura, Apartado de Correos 108, 06071 Badajoz, Spain
I. Gil-Exojo
Affiliation:
Dpto. de Fisiología, Facultad de Medicina, Universidad de Extremadura, Apartado de Correos 108, 06071 Badajoz, Spain
A. Romero de Tejada
Affiliation:
Dpto. de Fisiología, Facultad de Medicina, Universidad de Extremadura, Apartado de Correos 108, 06071 Badajoz, Spain
J. E. Campillo
Affiliation:
Dpto. de Fisiología, Facultad de Medicina, Universidad de Extremadura, Apartado de Correos 108, 06071 Badajoz, Spain
*
*Corresponding author: Dr M. A. Tormo, fax +34 924 289437, email matormo@unex.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A purified pancreatic α-amylase inhibitor (α-AI) from white beans (Phaseolus vulgaris) was administered orally (100m/g body weight dissolved in 9g NaC/) for 22d to non-diabetic (ND) and type 2 diabetic (neonatal diabetes models n0-STZ and n5-STZ) male Wistar rats. Mean glycaemia (mmo/) declined from day 4 of the α-AI administration in ND rats (5·48 (sem 0·08) v. 4·39 (sem 0·13); P<0·05), n0-STZ diabetic rats (7·94 (sem 0·42) v. 5·56 (sem 0·32); P<0·01) and n5-STZ diabetic rats (17·34 (sem 2·58) v. 11·93 (sem 1·96)), until the end of treatment: ND (5·22 (sem 0·21) v. 3·97 (sem 0·06); P<0·01); n0-STZ (8·10 (sem 0·19) v. 5·21 (sem 0·30); P<0·01); and n5-STZ (16·36 (sem 2·14) v. 7·69 (sem 1·34); P<0·01). There was a decrease in water intake (m/) in the α-AI-treated diabetic rats: n0-STZ (30 (sem 0·10) v. 22 (sem 1·50); P<0·01) and n5-STZ (76 (sem 5·04) v. 57 (sem 4·85); P<0·01). Food intake (/) decreased in all three groups: ND (23 (sem 0·31) v. 20 (sem 0·03); P<0·05); n0-STZ (22 (sem 0·55) v. 16 (sem 0·98); P<0·01); and n5-STZ (31 (sem 0·58) v. 23 (sem 1·20); P<0·01). The enterocyte sucrase and maltase activities (/ proteins) were high (P<0·01) in the untreated diabetic rats, n0-STZ (45 (sem 4) and 152 (sem 10), respectively) and n5-STZ (67 (sem 12) and 151 (sem 10), respectively) with respect to the ND rats (24 (sem 2) and 74 (sem 10), respectively). After α-AI treatment, enzyme activities declined in both diabetic rats, n0-STZ (21 (sem 2) and 85 (sem 11); P<0·01) and n5-STZ (28 (sem 7) and 75 (sem 19); P<0·05), to values close to those in the ND rats. In conclusion, α-AI significantly reduced glycaemia in both the ND and diabetic animals and reduced the intake of food and water, and normalized the elevated disaccharidase levels of the diabetic rats.

Type
Research Article
Copyright
Copyright © The Nutrition Society 2006

References

Adachi, T, Takenoshita, M, Katsura, H, et al. (1999) Disordered expression of the sucrase-isomaltase complex in the small intestine in Otsuka Long-Evans tokushima fatty rats, a model of non-insulin-dependent diabetes mellitus with insulin resistance. Biochim Biophys Acta 4, 126132.CrossRefGoogle Scholar
Boivin, M, Zinsmeister, AR, Go, VL & DiMagno, EP (1987) Effect of a purified amylase inhibitor on carbohydrate metabolism after a mixed meal in healthy humans. Mayo Clin Proc 62, 249255.CrossRefGoogle ScholarPubMed
Bowman, DE (1945) Amylase inhibitor of navy bean. Science 102, 358359.CrossRefGoogle Scholar
Caspary, WF, Rhein, AM & Creutzfeldt, W (1972) Increase of intestinal brush border hydrolases in mucosa of streptozotocin-diabetic rats. Diabetologia 8, 412414.CrossRefGoogle ScholarPubMed
Ceriello, A (2005) Postprandial hyperglycemia and diabetes complications. Is it time to treat? Diabetes 54, 17.CrossRefGoogle ScholarPubMed
Chiasson, JL, Josse, RG, Gomis, R, et al. (2004) Acarbose for the prevention of type 2 diabetes, hypertension and cardiovascular disease in subjects with impaired glucose tolerance: facts and interpretations concerning the critical analysis of the STOP-NIDDM trial data. Diabetologia 47, 969975.CrossRefGoogle ScholarPubMed
Dahlqvist, A (1964) Method for assay of intestinal disaccharidases. Anal Biochem 7, 1825.CrossRefGoogle ScholarPubMed
Ettarh, RR & Carr, KE (1997) A morphological study of the enteric mucosal epithelium in the streptozotocin-diabetic mouse. Life Sci 61, 18511858.CrossRefGoogle ScholarPubMed
Jaffé, WG & Lette, CL (1968) Heat-labile growth-inhibiting factors in beans (Phaseolus vulgaris). J Nutr 94, 203210.CrossRefGoogle ScholarPubMed
Jain, NK, Boivin, M, Zinsmeister, AR & DiMagno, EP (1991) The ileum and carbohydrate-mediated feedback regulation of postprandial pancreaticobiliary secretion in normal humans. Pancreas 6, 495505.CrossRefGoogle ScholarPubMed
Jenkins, DJ, Kendall, CW, Augustin, LS & Vuksan, VV (2002) High-complex carbohydrate or lente carbohydrate foods? Am J Med 113, 30S37S.CrossRefGoogle ScholarPubMed
Kataoka, K & DiMagno, EP (1999) Effect of prolonged intraluminal alpha-amylase inhibition on eating, weight, and the small intestine of rats. Nutrition 15, 123129.CrossRefGoogle ScholarPubMed
Kotaru, M, Iwami, K, Yeh, HY & Ibuki, F (1989) In vivo action of alpha-amylase inhibitor from cranberry bean (Phaseolus vulgaris) in rat small intestine. J Nutr Sci Vitaminol (Tokyo) 35, 579588.CrossRefGoogle ScholarPubMed
Layer, P, Zinsmeister, AR & DiMagno, EP (1986) Effects of decreasing intraluminal amylase activity on starch digestion and postprandial gastrointestinal function in humans. Gastroenterology 91, 4148.CrossRefGoogle ScholarPubMed
Le Berre-Anton, V, Bompard-Gilles, C, Payan, F & Rouge, P (1997) Characterization and functional properties of the alpha-amylase inhibitor (alpha-AI) from kidney bean (Phaseolus vulgaris) seeds. Biochim Biophys Acta 1343, 3140.CrossRefGoogle ScholarPubMed
Lebovitz, HE (1999) Type 2 diabetes: an overview. Clin Chem 45, 13391345.CrossRefGoogle ScholarPubMed
Maranesi, M, Carenini, G & Gentili, P (1984) Nutritional studies on anti alpha-amylase: (I). Influence on the growth rate, blood picture and biochemistry and histological parameters in rats. Acta Vitaminol Enzymol 6, 259269.Google ScholarPubMed
Marshall, JJ & Lauda, CM (1975) Purification and properties of phaseolamin, an inhibitor of alpha-amylase, from the kidney bean, Phaseolus vulgaris. J Biol Chem 250, 80308037.CrossRefGoogle ScholarPubMed
Martínez, IM, Morales, I, Garcia-Pino, G, Campillo, JE & Tormo, MA (2003) Experimental type 2 diabetes induces enzymatic changes in isolated rat enterocytes. Exp Diabesity Res 4, 119123.CrossRefGoogle ScholarPubMed
Moreno, J, Altabella, T & Chrispeels, MJ (1990) Characterization of α-amylase-inhibitor, a lectin-like protein in the seeds of Phaseolus vulgaris. Plant Physiol 92, 703709.CrossRefGoogle ScholarPubMed
Mulimani, VH & Rudrappa, G (1994) Effect of heat treatment and germination on alpha amylase inhibitor activity in chick peas (Cicer arietinum L). Plant Foods Hum Nutr 46, 133137.CrossRefGoogle ScholarPubMed
Murakami, I & Ikeda, T (1998) Effects of diabetes and hyperglycemia on disaccharidase activities in the rat. Scand J Gastroenterol 33, 10691073.Google ScholarPubMed
Portha, B, Blondel, O, Serradas, P, McEvoy, R, Giroix, MH, Kergoat, M & Bailbe, D (1989) The rat models of non-insulin dependent diabetes induced by neonatal streptozotocin. Diabetes Metab 15, 6175.Google ScholarPubMed
Portha, B, Levacher, C, Picon, L & Rosselin, G (1974) Diabetogenic effect of streptozotocin in the rat during the perinatal period. Diabetes 23, 889895.CrossRefGoogle ScholarPubMed
Puls, W & Kneup, U (1973) Influence of an amylase inhibitor (BAY d 7791) on blood glucose, serum insulin and NEFA in starch loading tests in rats, dog and man. Diabetologia 9, 97101.CrossRefGoogle Scholar
Pusztai, A, Grant, G, Duguid, T, et al. (1995) Inhibition of starch digestion by alpha-amylase inhibitor reduces the efficiency of utilization of dietary proteins and lipids and retards the growth of rats. J Nutr 125, 15541562.Google ScholarPubMed
Pusztai, A, Grant, G, Stewart, JC & Watt, WB (1988) Isolation of soybean trypsin inhibitors by affinity chromatography on anhydrotrypsin-Sepharose 4B. Anal Biochem 172, 108112.CrossRefGoogle ScholarPubMed
Real, Decreto (1988) Real Decreto 223/1988 de 14 de marzo, sobre protección de los animales utilizados para experimentación y otros fines científicos. (The Real Decreto 223/1988 on the protection of animals used for research and other scientific purposes, of March 14 1988). BOE 67, 85098512.Google Scholar
Tormo, MA, Gil-Exojo, I, Romero de Tejada, A & Campillo, JE (2004) Hypoglycaemic and anorexigenic activities of an α-amylase inhibitor from white kidney beans (Phaseolus vulgaris) in Wistar rats. Br J Nutr 92, 785790.CrossRefGoogle ScholarPubMed
Tormo, MA, Martínez, IM, Romero de Tejada, A, Gil-Exojo, I & Campillo, JE (2002) Morphological and enzymatic changes of the small intestine in an n0-STZ diabetic rat model. Exp Clin Endocrinol Diabetes 110, 119123.CrossRefGoogle Scholar
Watford, M, Lund, P & Krebs, HA (1979) Isolation and metabolic characteristics of rat and chicken enterocytes. Biochem J 178, 589596.CrossRefGoogle ScholarPubMed
Zhao, J, Yang, J & Gregersen, H (2003) Biomechanical and morphometric intestinal remodelling during experimental diabetes in rats. Diabetologia 46, 16881697.Google Scholar