Hostname: page-component-5d59c44645-ndqjc Total loading time: 0 Render date: 2024-02-20T20:58:33.892Z Has data issue: false hasContentIssue false

Vitamin A and carotenoid status in rural China

Published online by Cambridge University Press:  09 March 2007

Guangya Wang
Institute of Nutrition and Food Hygiene, Chinese Academy of Preventive Medicine, Beijing, China
Thierry A. Brun
The World Bank, Washington DC, USA
Catherine A. Geissler
Department of Nutrition and Dietetics, Division of Health Sciences, Kings College, University of London, W8 7AH
Banoo Parpia
Division of Nutritiona1 Sciences, Savage Hall, Cornell University, Ithaca, NY 14853, USA
Martin Root
Division of Nutritiona1 Sciences, Savage Hall, Cornell University, Ithaca, NY 14853, USA
Ming Li
Division of Nutritiona1 Sciences, Savage Hall, Cornell University, Ithaca, NY 14853, USA
T. Colin Campbell
Division of Nutritiona1 Sciences, Savage Hall, Cornell University, Ithaca, NY 14853, USA
Junshi Chen
Institute of Nutrition and Food Hygiene, Chinese Academy of Preventive Medicine, Beijing, China
Rights & Permissions [Opens in a new window]


Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Vitamin A status of 260 groups of twenty-five males or twenty-five females, aged 35–64 years, surveyed in twenty-four provinces of the People's Republic of China, was assessed by measuring plasma retinol, retinol-binding protein and β-carotene concentrations. Direct measurements of food intake over a 3 d period and questionnaire data on the frequency of consumption of vegetables, fruit, animal products and other dietary items were also used. Vitamin A status appeared to be low only in specific counties but in general was satisfactory or only marginally deficient. Plasma harotene levels were strikingly low in comparison with Western levels despite generous vegetable consumption suggwg that intake of vitamin A precursors may have been adequate but not abundant enough to maintain high circulating plasma levels of β-carotene. Plasma β-carotene, for both males and females, was significantly correlated with the frequency of consumption of green vegetables. Plasma retinol, for males, was highly correlated with meat, fish, oil and alcohol consumption expresPed both in quantity or frequency of consumption. Higher levels of plasma retinol, together with lower levels of plasma β-carotene in males compared with females, suggest that men consume more animal products or may have higher retinol requirements and therefore a higher rate of conversion of β-carotene to retinol.

Human and Clinical Nutrition
Copyright © The Nutrition Society 1997



Ascherio, A., Stampfer, M., Colditz, G., Rimm, E., Litin, L. & Willett, W. (1992). Correlations of vitamin A and E intakes with the plasma concentrations of carotenoids and tocopherols among American men and women. Journal of Nutrition 122, 17921801.Google Scholar
Campbell, T., Brun, T., Chen, J., Feng, Z. & Parpia, B. (1990). Questioning riboflavin recommendations on the basis of a survey in China. American Journal of Clinical Nutrition 51, 436445.Google Scholar
Chen, C. (1986). The National Nutrition Survey of China, 1982: summary results. Food and Nutrition 1986 12, 5860.Google Scholar
Chen, J., Campbell, T., Li, J. & Peto, R. (1990). Diet, Lifestyle and Mortality in the People's Republic of China: A Study of the Characteristics of 65 Chinese Counties. Oxford, Ithaca and Beijing: Joint Publication of Oxford University Press, Cornell University Press and the People's Medical Publishing House.Google Scholar
Comstock, G., Menkes, M., Schober, S., Vuilleumier, J.-P., & Helsing, K. (1988). Serum levels of retinol, βcarotene, and α-tocopherol in older adults. American Journal of Epidemiology 127, 114123.Google Scholar
Cui, Y. (1987). Public Health in the People's Republic of China. Wanchai, Hong Kong and Beijing, China: Joint publication of the People's Medical Publishing House and China and Medical China Publishing Ltd.Google Scholar
Department of Health and Human Services (1983). Dietary intake source data United States 1976–1980. Series II, no. 231. Hyatsville, MD: Pub no. PHS 83–1681 National Health Survey.Google Scholar
DeRuyter, M. & DeLeenheer, A. (1978). Simultaneous determination of retinol and retinyl esters in serum or plasma by reversed-phase high performance liquid chromatography. Clinical Chemistry 24, 19201923.Google Scholar
Driskell, W., Neese, J., Bryand, C. & Bashor, M. (1982). Measurement of vitamin A and vitamin E in human serum by high-performance liquid chromatography. Journal of Chromatography 231, 439444.Google Scholar
Ershow, A. & Wong-Chen, K. (1990). Chinese food composition tables. Journal of Food Composition and Analysis 3, 191437.Google Scholar
Farthing, J., Mata, L., Urrutia, J.J. & Kronmal, R. (1986). Natural history of giardia infection in infants and children in rural Guatemala and its impact on physical growth. American Journal of Clinical Nutrition 43, 395405.Google Scholar
Freedman, R. (1978). Review of recently published work dealing with nutrition research in mainland China. World Review of Nutrition and Dietetics 30, 122.Google Scholar
Friedman, G., Blaner, W., Goodman, D., Vogelman, J., Brind, J., Hoover, R., Fireman, B. & Orentreich, R. (1986). Serum retinol and retinol-binding levels do not predict subsequent lung cancer. American Journal of Epidemiology 123, 781789.Google Scholar
Gibson, R. (1990). Principles of Nutritional Assessment. Oxford: Oxford University Press.Google Scholar
Gopalan, C., Vankatachalam, P. & Bhavani, B. (1960). Studies of vitamin A deficiency in children. American Journal of Clinical Nutrition 8, 833840.Google Scholar
Gravesen, K. (1967). Vitamin A and carotene in serum from healthy Danish subjects. Scandinavian Journal of Clinical and Laboratory Investigation 20, 5762.Google Scholar
Institute of Health (1980). Chinese Food Composition Table. Beijing, People's Republic of China: China Medical Publishing House.Google Scholar
Kanai, M., Raz, A. & Goodman, D. (1968). Retinol-binding protein: the transport protein for vitamin A in human plasma. Journal of Clinical Investigation 47, 20252044.Google Scholar
Kasper, H. (1969). Die vitamin-A und cartonkonzentration im serum. I. Bei optimal ernahrten personen in Westdeutschland (Vitamin A and carotene concentration in serum: among optimally nourished people in West Germany). Internationale Zeitschrijl für Vitaminforschung 38, 142148.Google Scholar
Katsampes, C., McCoord, A. & Phillips, W. (1944). Vitamin A absorption test in cases of giardiasis. American Journal of Diseases of Children 67, 189193.Google Scholar
Latham, M. & Solon, F. (1986). Vitamin A deficiency control in the Philippines. In Vitamin A Deficiency and Its Control [Bauemfeind, J.C., editor]. Orlando FL: Academic Press, Inc.Google Scholar
Le Francois, P., Chevassus-Agnes, S. & Ndiaye, A. (1981). Plasma carotenoids as a useful indicator of vitamin A status. American Journal of Clinical Nutrition 34, 434.Google Scholar
Lie, C., Ying, C., En-Lin, W., Brun, T. & Geissler, C. (1993). Impact of large dose vitamin A supplementation on childhood diarrhoea, respiratory disease and growth. European Journal of Clinical Nutrition 47, 8896.Google Scholar
Leitner, Z., Moore, T. & Sharman, I. (1960). Vitamin A and vitamin E in human blood. 1. Levels of vitamin A and carotenoids in British men and women. British Journal of Nutrition 14, 157169.Google Scholar
Mancini, G., Carbonara, A. & Heremans, J. (1965). Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochemistry 2, 235254.Google Scholar
Martson, R. & Raper, N. (1986). Nutrient content of food supply. National Food Review 32, 912.Google Scholar
Olson, J. (1981). Reply to letter by Le Francois, Chevassus-Agnes and Ndiaye. American Journal of Clinical Nutrition 34, 435436.Google Scholar
Olson, J. (1984). Serum levels of vitamin A and carotenoids as reflectors of nutritional status. Journal of the National Cancer Institute 73, 14391444.Google Scholar
Olson, J.A. (1987). Recommended dietary intakes (RDI) of vitamin A in humans. American Journal of Clinical Nutrition 45, 704716.Google Scholar
Parker, R. (1989). Carotenoids in human blood and tissues. Journal of Nutrition 119, 101104.Google Scholar
Pilch, S. (1985). Assessment of the Vitamin A Status of the US Population Based on Data Collected in the Health and Nutritional Examination Surveys. Bethesda, MD: Life Science Research Office, Federation of American Societies for Experimental Biology.Google Scholar
Solomons, N. & Russell, R. (1980). The interaction of vitamin A and zinc: implications for human nutrition. American Journal of Clinical Nutrition 33, 20312040.Google Scholar
Solon, F., Popkin, B., Fernandez, T. & Latham, M. (1978). Vitamin A deficiency in the Philippines: a study of xerophthalmia in Cebu. American Journal of Clinical Nutrition 31, 360368.Google Scholar
Stacewicz-Sapuntzakis, M., Bowen, P. E., Kikendall, J. W. & Burgess, M. (1987). Simultaneous determination of serum retinol and various carotenoids; their distribution in middle-aged men and women. Journal of Micronutrient Analysis 3, 2745.Google Scholar
Statistical Analysis Systems (1985). SAS User's Guide: Basics Version 5. Cary, NC: SAS Institute, Inc.Google Scholar
Stryker, W. S., Kaplan, L. A., Stein, E. A., Stampfer, M. J., Sober, A. & Willett, W. C. (1988). The relation of diet, cigarette smoking, and alcohol consumption to plasma β-carotene and α-tocopherol levels. American Journal of Epidemiology 127, 283296.Google Scholar
Thurnham, D., Munoz, N., Lu, J., Wahrendorf, J., Zheng, S.-F., Hambidge, K. & Crespi, M., (1988). Nutritional and haematological status of Chinese farmers: the influence of 13·5 months treatment with riboflavin, retinol and zinc. European Journal of Clinical Nutrition 42, 647660.Google Scholar
Thurnham, D., Rathakette, P., Hambidge, K., Munoz, N. & Crespi, M. (1982). Riboflavin, vitamin A and zinc status in Chinese subjects in a high-risk area for oesophageal cancer in China. Human Nutrition: Clinical Nutrition 36C, 337349.Google Scholar
Tian, Q., Yang, B., Wang, S., Huang, H., Li, Y. & Lu, Z. (1988). An assay on serum vitamin A level of 774 children in the countryside. Acta Nutrimenta Sinica 10, 192195.Google Scholar
Tietz, N. W. (1986). Textbood of Clinical Chemistry. Philadelphia, PA: W. B. Saunders Co.Google Scholar
Underwood, B. (1984). Vitamin A in human and animal nutrition. In The Retinoids [Sporn, M., Roberts, A. and Goodman, D., editors]. Orlando, FL: Academic Press.Google Scholar
United States Department of Agriculture, Human Nutrition Information Service, Consumer Nutrition Division (1984). Nutrient Intakes: Individuals in 48 States, Year 1977–78. NFCS 1977–78 Report no. 1–2. Hyattsville, MD: USDA.Google Scholar
United States Department of Agriculture, Human Nutrition Information Service, Nutrition Monitoring Division (1986). Nationwide Food Consumption Survey Continuing Survey of Food Intakes by Individuals Men 19–50 Years, I Day. Report 85–3. Hyattsville, MD: USDA.Google Scholar
Vuilleumier, J.-P., Keller, H., Gysel, D. & Hunziker, F. (1983). Clinical methods for the routine assessment of the vitamin status in human populations. International Journal for Vitamin and Nutrition Research 53, 265272.Google Scholar
Wang, E., Zhu, Q., Huang, L., Liang, X., Tian, L., Han, L. & Zhang, W. (1989 a). Investigation of serum vitamin A level in children under 3 years old in both city and countryside of Wuhan. Acta Nutrimenta Sinica 1, 8688.Google Scholar
Wang, G., Root, M., Chen, J., Ye, X. & Campbell, T. (1989 b). Routine assay of plasma carotenes by HPLC with an internal standard. Journal of Micronutrient Analysis 5, 314.Google Scholar
Williams, H., Parker, J., Pierce, Z., Hart, J., Fiala, G. & Pilcher, H. L. (1951). Nutritional Status Survey. Groton Township, New York. Journal of the American Dietetic Association 27, 215221.Google Scholar
Yang, C., Sun, Y., Yang, Q., Miller, K., Li, G., Zheng, S. -F., Ershow, A., Blot, W. & Li, J. (1984). Vitamin A and other deficiencies in Linxian, a high esophageal cancer incidence area in Northern China. Journal of the National Cancer Institute 73, 14491453.Google Scholar
Zhao, X. -H. (1988). Vitamin A nutritional status of Chinese population. Journal of Nutritional Science and Vitaminology, Special Suppl., 202205.Google Scholar