Skip to main content Accessibility help
×
Home
Hostname: page-component-78bd46657c-j4m62 Total loading time: 0.6 Render date: 2021-05-09T07:29:27.009Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Use of water-miscible retinyl palmitate as markers of chylomicrons gives earlier peak response of plasma retinyl esters compared with oil-soluble retinyl palmitate

Published online by Cambridge University Press:  09 March 2007

K. D. Renuka
Affiliation:
Hugh Sinclair Unit of Human Nutrition, School of Food Biosciences, University of Reading, Reading, Berkshire RG6 6AP, UK
R. Silva
Affiliation:
Hugh Sinclair Unit of Human Nutrition, School of Food Biosciences, University of Reading, Reading, Berkshire RG6 6AP, UK
Christine M. Williams
Affiliation:
Hugh Sinclair Unit of Human Nutrition, School of Food Biosciences, University of Reading, Reading, Berkshire RG6 6AP, UK
Julie A. Lovegrove
Affiliation:
Hugh Sinclair Unit of Human Nutrition, School of Food Biosciences, University of Reading, Reading, Berkshire RG6 6AP, UK
Corresponding
Rights & Permissions[Opens in a new window]

Abstract

Delayed peak response of plasma retinyl esters (RE) relative to plasma triacylglycerols (TAG) and apolipoprotein (Apo) B-48 responses following a fat load supplemented with vitamin A raised doubts about the use of vitamin A to label dietary-derived lipids and lipoproteins. The present study compared the use of water-miscible and oil-soluble retinyl palmitate (RP) as markers of dietary-derived lipoproteins in healthy subjects along with the measurements of postprandial plasma TAG and ApoB-48 responses to investigate whether the delayed peak response observed was due to delayed intestinal output of RE from oil-based solutions. Nine healthy female subjects were given a standard test meal containing a dose (112 mg) of RP in either water-miscible or oil-soluble form in random order, on two separate occasions after a 12 h overnight fast. The results showed that the mean plasma RE concentrations reached a peak significantly later than mean plasma TAG and ApoB-48 concentrations when oil-soluble RP was consumed, whereas plasma RE peaked earlier relative to plasma TAG and ApoB-48 responses when water-miscible RP was used. The results suggested a more rapid absorption with a significantly higher and earlier peak response of plasma RE when water-miscible RP was consumed. This was in contrast to the delayed initial appearance and later sustained higher concentrations of plasma RE during the late postprandial period when oil-soluble RP was consumed. The RE response to the water-miscible RP showed better concordance with plasma TAG response than that of oil-soluble RP.

Type
Short communication
Copyright
Copyright © The Nutrition Society 2001

References

Blomhoff, R, Green, MH, Green, JB, Berg, T & Norum, KR (1991) Vitamin A metabolism: New perspectives on absorption, transport, and storage. Physiological Reviews 71, 951990.CrossRefGoogle Scholar
Cohn, JS, McNamara, JR, Krasinski, SD, Russell, RM & Schaefer, EJ (1989) Role of triglyceride-rich lipoproteins from the liver and intestine in the etiology of postprandial peaks in plasma triglyceride concentration. Metabolism 38, 484490.CrossRefGoogle ScholarPubMed
Cortner, JA, Coates, PM, Le, N-A, Cryer, DR, Ragni, MC, Faulkner, A & Langer, T (1987) Kinetics of chylomicron remnant clearance in normal and hyperlipoproteinemic subjects. Journal of Lipid Research 28, 195206.Google ScholarPubMed
Edelstein, C & Scanu, AM (1986) Precautionary measures for collecting blood destined for lipoprotein isolation. Methods in Enzymology 128, 151155.CrossRefGoogle ScholarPubMed
Goodman, DS, Bolmstrand, B, Werner, B, Huang, HS & Shiratori, T (1966) The intestinal absorption and metabolism of vitamin A and beta-carotene in man. Journal of Clinical Investigation 45, 16151623.CrossRefGoogle ScholarPubMed
Goodman, DS, Huang, HS & Shiratori, T (1965) Tissue distribution and metabolism of newly absorbed vitamin A in the rat. Journal of Lipid Research 6, 390396.Google ScholarPubMed
Hazzard, WR & Bierman, EL (1976) Delayed clearance of chylomicron remnants following vitamin A-containing oral fat loads in broad beta disease (type III hyperlipoproteinaemia). Metabolism 25, 771801.CrossRefGoogle Scholar
Johnson, EJ, Krasinski, SD, Howard, LJ, Alger, SA, Dutta, SK & Russell, RM (1992) Evaluation of vitamin A absorption by using oil-soluble and water-miscible vitamin A preparations in normal adults and in patients with gastrointestinal disease. American Journal of Clinical Nutrition 55, 857864.CrossRefGoogle ScholarPubMed
Karpe, F, Bell, M, Björkegren, J & Hamsten, A (1995) Quantification of postprandial triglyceride-rich lipoproteins in healthy men by retinyl ester labelling and simultaneous measurement of apolipoprotein B-48 and B-100. Arteriosclerosis, Thrombosis and Vascular Biology 15, 199207.CrossRefGoogle Scholar
Krasinski, SD, Cohn, JS, Russell, RM & Schaefer, EJ (1990) Postprandial plasma vitamin A metabolism in humans: A reassessment of the use of plasma retinyl esters as markers for intestinally derived chylomicrons and their remnants. Metabolism 39, 357365.CrossRefGoogle ScholarPubMed
Lewis, JM, Bodansky, O, Birmingham, J & Cohlan, SQ (1947) Comparative absorption, excretion and storage of oily and aqueous preparation of vitamin A. Journal of Pediatrics 31, 496508.CrossRefGoogle Scholar
Lovegrove, JA, Isherwood, SG, Jackson, KG, Williams, CM & Gould, BJ (1996) Quantitation of apolipoprotein B-48 in triacylglycerol-rich lipoproteins by a specific enzyme-linked immunosorbant assay. Biochimica et Biophysica Acta 1301, 221229.CrossRefGoogle Scholar
Lovegrove, JA, Jackson, KG, Murphy, MC, Brookes, CN, Zampelas, A, Knapper, JME, Wright, JW, Gould, BJ & Williams, CM (1999) Markers of intestinally-derived lipoproteins: application to studies of altered diet and meal fatty acid composition. Nutrition, Metabolism and Cardiovascular Diseases 9, 918.Google Scholar
Matthews, JNS, Altman, DG, Campbell, MJ & Royston, P (1990) Analysis of serial measurements in medical research. British Medical Journal 300, 230235.CrossRefGoogle ScholarPubMed
Ong, DE (1994) Cellular transport and metabolism of vitamin A: Roles of cellular retinoid-binding proteins. Nutrition Reviews 52, S24S31.CrossRefGoogle ScholarPubMed
Ruotolo, G, Zhang, H, Bentsianov, V & Le, NA (1992) Protocol for the study of the metabolism of retinyl esters in plasma lipoproteins during postprandial lipaemia. Journal of Lipid Research 33, 15411549.Google Scholar
Thompson, KH, Hughes, LB & Zilversmit, DB (1983) Lack of secretion of retinyl esters by livers of normal and cholesterol-fed rabbits. Journal of Nutrition 113, 19952001.CrossRefGoogle Scholar
Wilson, DE, Chan, IF & Ball, M (1983) Plasma lipoprotein retinoids after vitamin A feeding in normal man: Minimal appearance of retinyl esters among low density lipoproteins. Metabolism 32, 514517.CrossRefGoogle ScholarPubMed
Zilversmit, DB (1979) Atherogenesis: a postprandial phenomenon. Circulation 60, 473485.CrossRefGoogle ScholarPubMed
You have Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Use of water-miscible retinyl palmitate as markers of chylomicrons gives earlier peak response of plasma retinyl esters compared with oil-soluble retinyl palmitate
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Use of water-miscible retinyl palmitate as markers of chylomicrons gives earlier peak response of plasma retinyl esters compared with oil-soluble retinyl palmitate
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Use of water-miscible retinyl palmitate as markers of chylomicrons gives earlier peak response of plasma retinyl esters compared with oil-soluble retinyl palmitate
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *