Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T05:11:47.924Z Has data issue: false hasContentIssue false

Tissue α-tocopherol status during late fetal and early neonatal life of the guinea-pig

Published online by Cambridge University Press:  09 March 2007

Frank J. Kelly
Affiliation:
Department of Human Nutrition, University of Southampton, Southampton SO9 3TU Brunel University, Uxbridge UB8 3PH
Morteza Safavi
Affiliation:
Department of Biology and Biochemistry, Brunel University, Uxbridge UB8 3PH
Kevin H. Cheeseman
Affiliation:
Department of Biology and Biochemistry, Brunel University, Uxbridge UB8 3PH
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The α-tocopherol content of a number of different fetal, neonatal and maternal guinea-pig tissues was determined and compared with plasma and erythrocyte α-tocopherol values. During late gestation, the fetal liver appears to act as a storage site for α-tocopherol, the majority of which is released immediately following birth. In contrast, lung and brain vitamin E levels are relatively constant over the final period of gestation and during early neonatal life. The ontogeny of α-tocopherol in brain and lung was similar to that for erythrocytes while plasma α-tocopherol content varied considerably and did not accurately reflect tissue α-tocopherol status. Surprisingly, fetal and maternal lung α-tocopherol concentrations were similar at all time-points considered, whereas fetal liver α-tocopherol status was always considerably greater than maternal liver α-tocopherol content. These results, if representative of the human fetus, suggest that preterm infants may not have tissue α-tocopherol concentrations as low as previously assumed and that during the perinatal period erythrocyte α-tocopherol content is a more accurate indicator of tissue α-tocopherol concentration than plasma α-tocopherol content.

Type
Fetal and Neonatal Nutritional Status
Copyright
Copyright © The Nutrition Society 1992

References

REFERENCES

Bell, E. F., Brown, E. J., Milner, R., Sinclair, J. C. & Zipursky, A. (1979) Vitamin E absorption in small premature infants. Pediatrics 63, 830832.CrossRefGoogle ScholarPubMed
Burton, G. W. & Ingold, K. U. (1986) Vitamin E: Application of the principles of physical and organic chemistry to the exploration of its structure and function. Accounts on Chemical Research 19, 194201.CrossRefGoogle Scholar
Burton, G. W., Webb, A. & Ingold, K. U. (1985) A mild, rapid and efficient method of lipid extraction for use in determining vitamin E/lipid ratios. Lipids 20, 2939.CrossRefGoogle ScholarPubMed
Butcher, J. R. & Roberts, R. J. (1981) α-Tocopherol (vitamin E) content of lung, liver and blood in the newborn rat and human infant: Influence of hyperoxia. Pediatrics 98, 806, 811.Google Scholar
Chiswick, M. K., Johnston, M., Woodhall, C., Gowland, M., Davies, J., Toner, N. & Sims, D. G. (1983) Protective effect of vitamin E against intraventricular hemorrhage in premature babies. British Medical Journal 287, 8184.CrossRefGoogle ScholarPubMed
Dju, M. Y. & Mason, K. K. (1952) Vitamin E (tocopherol) in human fetuses and placentae. Etudes Néo-natales 1, 4962.Google ScholarPubMed
Dju, M. Y., Mason, K. E. & Filer, L. J. (1958) Vitamin E (tocopherol) in human tissues from birth to old age. American Journal of Clinical Nutrition 6, 5060.CrossRefGoogle ScholarPubMed
Ehrenkranz, R. A., Bonta, B. W., Ablow, R. C. & Warshaw, J. B. (1982) Amelioration of bronchopulmonary dysplasia after vitamin A administration. New England Journal of Medicine 29, 564569.Google Scholar
Gross, S. J. & Gabriel, E. (1985) Vitamin E status in preterm infants fed human milk or infant formula. Journal of Pediatrics 106, 635639.CrossRefGoogle ScholarPubMed
Hittner, H. M., Godio, L. B., Rudolph, A. J., Adams, L. H., Garcia-Prats, J. A., Friedman, Z., Kavtz, J. A. & Monaco, W. A. (1981) Retrolental fibroplasia: efficacy of vitamin E in a double-blind clinical study of preterm infants. New England Journal of Medicine 305, 1365–71.CrossRefGoogle Scholar
Johnson, L., Schaffer, D. & Boggs, T. (1984) The premature infant, vitamin E deficiency and retrolental fibroplasia. American Journal of Clinical Nutrition 27, 11581173.CrossRefGoogle Scholar
Kelly, F. J., Rickett, G., Hunt, G., Town, I., Holgate, S. & Postle, T. (1990a) Biochemical maturation of the guinea pig lung and survival following premature delivery. International Journal of Biochemistry 73, 693697.Google Scholar
Kelly, F. J., Rodgers, W., Handel, J., Smith, S. & Hall, M. A. (1990b) Time course of vitamin E repletion in the premature infant. British Journal of Nutrition 63, 631638.CrossRefGoogle ScholarPubMed
Kelly, F. J., Town, I., Phillips, G., Holgate, S., Roche, W. & Postle, T. (1991) The preterm guinea pig: A model for the study of neonatal lung disease. Clinical Science 81, 439446.CrossRefGoogle Scholar
McCay, P. B., Pfeifer, P. M. & Stipe, W. H. (1972) Vitamin E protection of membrane lipids during electron transport functions. Annals of the New York Academy of Sciences 203, 6273.CrossRefGoogle ScholarPubMed
Mason, K. E. & Filer, L. J. (1947) Interrelationships of dietary fat and tocopherols. Journal of the American Oil Chemists' Society 24, 240242.CrossRefGoogle Scholar
Mino, M., Kitagawa, M. & Nakagawa, S. (1985) Red blood cell tocopherol concentrations in a normal population of Japanese children. American Journal of Clinical Nutrition 41, 621628.CrossRefGoogle Scholar
Mino, M., Nishino, H., Yamaguchi, T. & Hayashi, M. (1977) Tocopherol level in human fetal and infant liver. Journal of Nutritional Science and Vitaminology 23, 6369.CrossRefGoogle ScholarPubMed
Muller, D. P. R. (1987) Free radical problems of the newborn. Proceedings of the Nutrition Society 46, 6975.CrossRefGoogle ScholarPubMed
Ostrea, E. M., Balun, J. E., Winkler, R. & Porter, T. (1986) Influence of breast-feeding on the restoration of the low serum concentration of vitamin E and β-carotene in the newborn infant. American Journal of Obstetrics and Gynecology 154, 10141017.CrossRefGoogle ScholarPubMed
Owens, W. C. & Owens, E. U. (1949) Retrolental fibroplasia in premature infants. II. Studies on the prophylaxis of the disease: the use of alpha tocopherol acetate. American Journal of Ophthalmology 32, 16311637.CrossRefGoogle Scholar
Rickett, G. W. & Kelly, F. J. (1990) Developmental expression of antioxidant enzymes in guinea pig lung and liver. Development 106, 331336.CrossRefGoogle Scholar
Schlotke, B., Busch, L. & Koch, F. (1978) Untersuchungen zum einfluβ vitamin-E-armer ernährung bei sauen während der gravidität auf den vitamin-E-status der ferkel in der neugeborenenphase (Studies on the effect of vitamin E deficient diet in sows during pregnancy on the vitamin E status of newborn piglets). Zentralblatt für Veterinärmedizin 25, 474478.CrossRefGoogle Scholar
Speer, M. E., Blifeld, C., Rudolph, A. J., Chadda, P., Holbein, B. & Hittner, H. (1984) Intraventricular hemorrhage and vitamin E in the very low birth weight infant: evidence for efficacy of early intramuscular vitamin E administration. Pediatrics 74, 11071112.CrossRefGoogle ScholarPubMed
Tappel, A. L. (1962) Vitamin E as the biological lipid antioxidant. Vitamins and Hormones 20, 493510.CrossRefGoogle Scholar