Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-18T12:59:11.849Z Has data issue: false hasContentIssue false

Tissue pyridoxal phosphate concentration and pyridoxaminephosphate oxidase activity in riboflavin deficiency in rats and man

Published online by Cambridge University Press:  24 July 2007

Ambale V. Lakshmi
Affiliation:
National Institute of Nutrition, Indian Council of Medical Researela, Jamai-Osmania, Hyderabad-500007, India
M. S Bamji
Affiliation:
National Institute of Nutrition, Indian Council of Medical Researela, Jamai-Osmania, Hyderabad-500007, India
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Parenteral administration of pyridoxal 5′-phosphate (PALP) to riboflavin-deficient rats increased the non-FAD component of erythrocyte riboflavin.

2. Pyridoxaminephosphate oxidase (EC 1.4.3.5) activity in the livers of riboflavin-deficient animals was only 15% of that of controls. PALP concentration in blood, liver and brain was not affected. Deficient animals had higher levels of pyridoxine in liver.

3. Human subjects with lesions of the mouth responded to treatment with either riboflavin or pyridoxine.

4. PALP concentration of human blood was not affected by administration of riboflavin but was markedly increased by pyridoxine.

5. Erythrocyte glutathione reductase activity (EC 1.6.4.2) in humans was increased and in vitro stimulation of the enzyme with FAD was decreased by treatment with riboflavin, but not by treatment with pyridoxine.

Type
Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1974

References

REFERENCES

Anderson, B. B., Fulford-Jones, C. E., Child, J. A., Beard, M. E. J. & Bateman, C. J. T. (1971). clin. Invest. 50, 1901.CrossRefGoogle Scholar
Aly, H. E., Donald, E. A. & Simpson, M. H. W. (1971). Am. J. clin. Nutr. 24, 297.CrossRefGoogle Scholar
Bamji, M. S. (1969). Clinica chim. Acta 26, 263.CrossRefGoogle Scholar
Bamji, M. S. (1971). Proc. 1st Asian Congr. Nutr. p. 142 [Tulpule, P. G. and Jaya Rao, K., editors]. IndiaGoogle Scholar
Bamji, M. S. & Sharada, D. (1972). J. Nutr. 102, 443.CrossRefGoogle Scholar
Brin, M. (1971). Am. J. clin. Nutr. 24, 699.Google Scholar
Chatterjee, A. K. & Ghosh, B. B. (1970). Endokrinologie 56, 218.Google Scholar
Chatterjee, A. K., Jamdar, S. C. & Ghosh, B. B. (1966). Experientia 22, 794.CrossRefGoogle Scholar
Iyengar, L. (1973). Lancet i, 680.CrossRefGoogle Scholar
Katunurna, N., Kominami, E. & Korninarni, S. (1971). Biochem. biophys. Res. Commun. 45, 70.Google Scholar
Krishnaswarny, K. (1971). Int. Z. VitamForsch. 41, 247.Google Scholar
Lefauconnier, J., Portemer, C., Debilly, G., Ipakitchi, M. & Chatagner, F. (1973). Biochim. biophys. Acta 297, 135.CrossRefGoogle Scholar
Mason, M. (1953). J. biol. Chem. 201, 513.CrossRefGoogle Scholar
Nakahara, I., Morino, Y., Morisue, T. & Sakamoto, Y. (1961). J. Biochem., Tokyo 49, 339.CrossRefGoogle Scholar
Nakahara, I., Watanabe, Y., Morino, Y. & Sakamoto, Y. (1961). J. Biochem., Tokyo 49, 343.CrossRefGoogle Scholar
Rose, D. P. & McGinty, F. (1968). Clin. Sci. 35, 1.Google Scholar
Sharada, D. & Bamji, M. S. (1972). Int. Z. VitamForsch. 42, 43.Google Scholar
Storvick, C. A., Benson, E. M., Edwards, M. A. & Woodring, M. J. (1965). Meth. biochem. Analysis 12, 183.CrossRefGoogle Scholar
Strobeker, R. & Henning, H. M. (1965). Vitamin Assay Tested Methods p. 144. Weinheim: Verlag Chemie GmbH.Google Scholar
Sundaresan, P. R. & Coursin, D. B. (1970). Meth. Enzym. 18, 509.CrossRefGoogle Scholar
Suzue, R. & Tachibana, M. (1970). J. Vitam. 16, 164.CrossRefGoogle Scholar
Wada, H. & Snell, E. E. (1961). J. bid. Chem. 236, 2089.Google Scholar