Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-19T04:53:54.614Z Has data issue: false hasContentIssue false

Studies on the active transport of D-glucose and L-histidine by rats and golden hamsters fed on a penicillin-enriched diet

Published online by Cambridge University Press:  09 March 2007

J. T. Hindmarsh
Affiliation:
Department of Physiology, The University, Sheffield, 10
D. Kilby
Affiliation:
Department of Physiology, The University, Sheffield, 10
G. Wiseman
Affiliation:
Department of Physiology, The University, Sheffield, 10
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The effect of a penicillin-enriched diet (100 mg or 1000 mg penicillin-G/kg food) on the active transport of D-glucose and L-histidine has been investigated by the use of sacs of everted small intestine of normal young adult rats and golden hamsters. The antibiotic was given for up to several weeks.

2. The penicillin made no difference to the final concentration gradients of D-glucose or L-histidine achieved by rat small intestine, although with the hamster these appeared somewhat improved. Water entry into the serosal fluid remained unchanged.

3. The lengths and the dry weights of the small intestines of both species were not altered by the dietary regimen.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1967

References

Barry, B. A., Matthews, J. & Smyth, D. H. (1961). J. Physiol., Lond. 157, 279.CrossRefGoogle Scholar
Baumann, C. A. (1956). Proc. 1st Int. Conf. on Use of Antibiotics in Agriculture, p. 47.Google Scholar
Braude, R., Coates, M. E., Davies, M. K., Harrison, G. F. & Mitchell, K. G. (1955). Br. J. Nutr. 9, 363.CrossRefGoogle Scholar
Carroll, R. W., Hensley, G. W., Sittler, C. L., Wilcox, E. L. & Graham, W. R. Jr (1953). Archs Biochem. Biophys. 45, 260.CrossRefGoogle Scholar
Coates, M. E., Davies, M. K. & Kon, S. K. (1955). Br. J. Nutr. 9, 110.CrossRefGoogle Scholar
Draper, H. H. (1958). J. Nutr. 64, 33.CrossRefGoogle Scholar
Ferrando, R., Bost, J. & Brenot, D. (1953). C. r. hebd. Séanc. Acad. Sci., Paris 236, 1618.Google Scholar
Hindmarsh, J. T., Kilby, D. & Wiseman, G. (1966 a). J. Physiol., Lond. 182, 52 P.Google Scholar
Hindmarsh, J. T., Kilby, D. & Wiseman, G. (1966 b). J. Physiol., Lond. 186, 166.CrossRefGoogle Scholar
Krebs, H. A. & Henseleit, K. (1932). Hoppe-Seyler's Z. physiol. Chem. 210, 33.CrossRefGoogle Scholar
Kwong, E., Barnes, R. H. & Fiala, G. (1962). J. Nutr. 77, 312.CrossRefGoogle Scholar
Macpherson, H. T. (1946). Biochem. J. 40, 470.CrossRefGoogle Scholar
Nelson, N. (1944). J. biol. Chem. 153, 375.CrossRefGoogle Scholar
Sauberlich, H. E. (1954). Antibiotics Chemother. 4, 48.Google Scholar
Wilson, T. H. & Wiseman, G. (1954). J. Physiol., Lond. 123, 116.CrossRefGoogle Scholar
Wiseman, G. (1955). J. Physiol., Lond. 127, 414.CrossRefGoogle Scholar
Wiseman, G. (1961). In Methods in Medical Research. Vol. 9, p. 287. [Quastel, J. H., editor.] Chicago: Year Book Medical Publishers.Google Scholar