Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-24T15:12:02.506Z Has data issue: false hasContentIssue false

Some effects of sulphur intake on molybdenum metabolism in sheep

Published online by Cambridge University Press:  08 December 2008

N. D. Grace
Affiliation:
Moredun Research Institute, EdinburghEHI7 7JH
N. F. Suttle
Affiliation:
Moredun Research Institute, EdinburghEHI7 7JH
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. To investigate the effects of sulphur intake on molybdenum metabolism in sheep, ewes were given intakes of 0.3 or 3.5 mg Mo and 0.98, 1.33, 1.73 or 3.23 g S/d in a 2 × 4 factorial experiment with two replicates lasting 35 d. 99Mo with 0.1 mg carrier Mo was infused intravenously for the last 14 d and, when 99Mo concentrations in urine and faeces had attained plateaux (days 11–14), stable Mo and 99Mo balance trials were conducted; samples of blood and rumen contents were taken principally for studies of Mo distribution.

2. Increases in S intake caused the following changes in Mo metabolism; absorption decreased, urinary and faecal endogenous excretion decreased and retention increased; Mo concentrations in rumen contents decreased but the predominant association with the solid phase was unaffected; Mo concentrations in plasma decreased, but a higher proportion was associated with the protein fraction; Mo in protein-free plasma became apparently less ultrafiltrable at the glomerulus.

3. The pattern of response to S for each factor was generally curvilinear, the first increment in S intake having by far the greatest effect. The effect of S was generally greatest at the higher Mo intake.

4. It is suggested that the manifold effects of S on Mo metabolism are related to a common interaction in the rumen leading to the formation of Mo-complexes, possibly thiomolybdates, which are poorly absorbed but even more poorly excreted.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1979

References

Anke, M., Grun, M., Partschefeld, M. & Groppel, B. (1978). In Trace Element Metabolism in Man and Animals, p. 230 [Kirchgessner, M. editor]. Weihenstephan: Arbeitskreis für Tierernährungsforschung.Google Scholar
Bell, M. C., Sneed, N. N. & Hall, R. F. (1966). Proc. 7th int. Cong. Nutr. Hamburg 5, 765.Google Scholar
Bird, P. R. & Fountain, R. D. (1970). Analyst, Lond. 95, 98.Google Scholar
Bradfield, E. G. & Stickland, J. F. (1975). Analyst, Lond. 100, 1.CrossRefGoogle Scholar
Bronner, F. (1964). In Mineral Metabolism, vol. 2, Part A, p. 413 [Comar, C. L. and Bronner, F., editors]. New York: Academic Press.Google Scholar
Compère, R., Vanuytrecht, S. & Fabry, J. (1965). Comp. Rend. Sac. Belg. Biol. 5, 1258.Google Scholar
Cunningham, I. J. & Hogan, K. G. (1958). N.Z.Jl. agric. Res. 1, 841.CrossRefGoogle Scholar
Cunningham, I. J., Hogan, K. G. & Lawson, B. M. (1959). N.Z. JI. agric. Res. 2, 145.CrossRefGoogle Scholar
Dick, A. T. (1956). Inorganic Nitrogen Metabolism, p. 445 [McElroy, W. D. and Glass, B. editors]. Baltimore, Md: John Hopkins Press.Google Scholar
Dick, A. T., Dewey, D. W. & Gawthorne, J. M. (1975). J. agric. Sci., Camb. 85, 567.CrossRefGoogle Scholar
Emersen, P. L. (1968). Biometrics 24, 695.Google Scholar
Gawthorne, J. M. & Nader, C. J. (1976). Br. J. Nutr. 35, 11.Google Scholar
Grace, N. D. & Suttle, N. F. (1978). In Trace Element Metabolism in Man and Animals, p. 159 [Kirch-gessner, M. editor]. Weihenstephan: Arbeitskreis für Tierernährungsforschung.Google Scholar
Huisingh, J., Gomez, G. G. & Matrone, G. (1973). Fedn Proc. Fedn Am. Socs exp. Biol. 32, 1921.Google Scholar
Huisingh, J. & Matrone, G. (1972). Proc. Soc. exp. Biol. Med. 139, 518.Google Scholar
Hume, I. D. & Bird, P. R. (1970). Aust. J. agric. Res. 21, 315.Google Scholar
Mason, J. & Cardin, C. J. (1977). Res. vet. Sci. 22, 313.CrossRefGoogle Scholar
Miller, J. K., Moss, B. R., Bell, M. C. & Sneed, N. N. (1972). J. Anim. Sci. 34, 846.Google Scholar
Mills, C. F., Bremner, I., El Gallad, T. T., Dalgarno, A. C. & Young, B. W. (1978). In Trace Element Metabolism in Men and Animals, p. 150 [Kirchgessner, M., editor]. Weihenstephan: Arbeitskrcis für Tierernährungsforschung.Google Scholar
Miltimore, J. E. & Mason, J. L. (1971). Can. J. Anim. Sci. 51, 193.Google Scholar
National Research Council (1957). Publ. nat. Res. Coun. Wash., no. 504.Google Scholar
Scaife, J. F. (1956). N.Z. Jl. Sci. Technol. 38A, 293.Google Scholar
Smith, B. S. W., Field, A. C. & Suttle, N. F. (1968). J. comp. Path. 78, 449.Google Scholar
Smith, B. S. W. & Wright, H. (1975). Clinica chim. Acta 62, 55.Google Scholar
Snedecor, G. W. (1956). In Statistical Methods Applied to Experiments in Agriculture and Biology, 5th ed., pp. 291, 329. Ames, Iowa: The Iowa State University Press.Google Scholar
Suttle, N. F. (1974 a). Proc. Nutr. Soc. 33, 299.CrossRefGoogle Scholar
Suttle, N. F. (1974 b). Br. J. Nutr. 32, 559.Google Scholar
Suttle, N. F. (1975). In Trace Elements in Soil-Plant-Animal Systems, p. 271 [Nicholas, D. J. D. and Egan, A. R. editors]. New York: Academic Press.Google Scholar
Suttle, N. F. & Field, A. C. (1968). J. comp. Path. 78, 351.CrossRefGoogle Scholar
Suttle, N. F. & Grace, N. D. (1978). Proc. Nutr. Soc. 37, 52A.Google Scholar
Thompson, R. H. & Blanchflower, W. J. (1971). Lab. Pract. 20, 859.Google Scholar
Tridot, G. & Bernard, J. C. (1962). Acta chim. hung. 34, 179.Google Scholar
Underwood, E. J. (1971). In Trace Elements in Human and Animal Nutrition, 4th ed., p. 123. New York: Academic Press.Google Scholar
Whitehead, D. C. (1966). Rep. Grassld Res. Inst., no. 4, p. 21.Google Scholar